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1 Chapter 1: Curves.

1.1 Introduction.

See textbook p. 1.

1.2 Parametrized Curves (this is section 1-2 of the book).

There are several ways to introduce a "curve in R3". For example, one can view it as the intersection
of two regular surfaces inR3, or view it as a subset satisfying the de�nition in p. 75 (similar to the
de�nition of a regular surface in p. 52), or view it as the "trace (i.e., image)" of a di¤erentiable map
� : I ! R3. However, from the viewpoint of di¤erentiable calculus (since we want to "do calculus
on the curve" and "to �nd some important quantities related to derivatives" !!!), the best way is
to view it as a di¤erentiable map, not just a subset of R3 (there is an ant crawling on the curve).
Thus we give the following de�nition:

De�nition 1.1 A parametrized di¤erentiable curve is a di¤erentiable (or smooth) map
� : I ! R3 of an open interval I = (a; b) of the real line R into R3: The image set � (I) is called
the trace of �; which is the usual "curves" you see in R3:

Note the following:

� From now on, for convenience, we shall call a "parametrized di¤erentiable curve" simply
a "di¤erentiable curve" of just a "curve" if no confusion occurs.

� The interval (a; b) can be (�1;1) : If we want to consider a curve with endpoints, we replace
I = (a; b) by I = [a; b] ; where both a; b are �nite.

� Writing � (t) = (x (t) ; y (t) ; z (t)) for t 2 I; the word "di¤erentiable" means that x (t) ; y (t) and
z (t) have derivatives of all orders (we say they are C1 functions).

De�nition 1.2 The vector �0 (t) = (x0 (t) ; y0 (t) ; z0 (t)) is called the tangent vector (or velocity
vector) of the curve � at t 2 I:

� One should carefully distinguish a parametrized curve, which is a map, from its trace (image),
which is a subset of R3: Two di¤erent curves in R3 may have the same trace.

� (Interesting.) There is a continuous map � : [0; 1]! R3 whose image is the whole closed
cube [0; 1]� [0; 1]� [0; 1] in R3 (or there is a continuous map � : [0; 1]! R2 whose image
is the whole closed square [0; 1] � [0; 1] in R2) (quite counter-intuitive !!!). Such a map
cannot be one-one. They are known as space-�lling curves.

Example 1.3 Do Example 1-5 in the book p. 2-4. For Example 2 in the book, if we let x = t3; y =
t2; we see that the whole parametrized curve � (t) = (t3; t2) ; t 2 (�1;1) ; has the same trace as
the graph y = x2=3; x 2 (�1;1) : The function y = x2=3 is not di¤erentiable at x = 0: Its graph is
given in p. 3 of the book. Note that �0 (0) = (0; 0) : We say � (t) has a singular point at t = 0:

Remark 1.4 Note in particular that in Example 2, a di¤erentiable curve may have "corners" of
"cusps" in its trace. These points occur at those points with zero tangent vector.
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Remark 1.5 It will be better to use the de�nition for inner product as

u � v = u1v1 + u2v2 + u3v3;

then the properties 1-4 in the bottom of p. 4 are quite easy to verify. Then from calculus we know
that it is equivalent to the geometric de�nition

u � v = juj jvj cos �:

Exercise 1.6 Do exercise 1, 2, 4, 5, in p. 5.

Example 1.7 (This interesting example is to compare with Example 4 in p. 3.) It is
interesting to see that there is a di¤erentiable curve � (t) : (�1;1)! R2 on R2 with its trace the
same as the trace of the curve � (t) = (t; jtj) 2 R2; t 2 (�1; 1) ; which has a corner at the point
(0; 0) : Note that � (t) is not a di¤erentiable curve. To construct � (t) ; we �rst de�ne x (t) as

x (t) =

8<:
e�1=t

2
; t 2 (0;1) ;

0; t = 0;

�e�1=t2 ; t 2 (�1; 0) :

One can see that x (t) is a di¤erentiable function on (�1;1) with x(k) (0) = 0 for all k 2 N:
Now let � (t) : (�1;1) ! R2 be � (t) = (x (t) ; jx (t)j) : We see that x (t) 2 (�1; 1) for all t 2
(�1;1) : Also the function jx (t)j 2 [0; 1) is also a di¤erentiable (C1) function on (�1;1) : We
have �0 (0) = (0; 0) (vanishing tangent vector), which explains why we have a corner at (0; 0) :
Compare with Example 2 in p. 3.

1.3 Regular Curves; Arc Length (this is section 1-3 of the book).

De�nition 1.8 Let � : I ! R3 be a curve. If �0 (t) 6= 0; then the line L containing the point � (t)
and pointing in the direction of �0 (t) is called the tangent line to � at t (or the tangent line to
� at �(t)). The parametric representation of L is

L = f�(t) + ��0(t) : � 2 Rg:

Remark 1.9 For the study of the di¤erential geometry of a curve � it is essential that there exists
such a tangent line at every point of the curve. We say t (or � (t)) is a singular point of � if
�0 (t) = 0:

De�nition 1.10 Let � : I ! R3 be a curve. If �0 (t) 6= 0 for all t 2 I; then we say � is a regular
curve.

Remark 1.11 From now on, we shall consider only regular parametrized di¤erentiable
curves.

De�nition 1.12 The arc length function s (t) ; measured from the point t0 (call it the origin of
�), of a regular curve � : I ! R3 is de�ned by

s (t) :=

Z t

t0

j�0 (t)j dt; t0 2 I; (1)

where j�0 (t)j =
q
(x0 (t))2 + (y0 (t))2 + (z0 (t))2; t 2 I: There is a geometric reason for such a

de�nition. See ex. 8 in p. 10.
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For the arc length function s (t) we have

s0 (t) = j�0 (t)j =
q
(x0 (t))2 + (y0 (t))2 + (z0 (t))2 > 0; 8 t 2 I:

Hence s (t) is a strictly increasing di¤erentiable (C1) function of t 2 I and it has di¤erentiable
inverse function t = t (s) for s 2 J (J = s (I)). If we use the arc length parameter s 2 J to
reparametrize the regular curve �; we get the new parametrized curve

� (s) := � (t (s)) ; s 2 J
and by the chain rule we have

j�0 (s)j = j�0 (t (s)) t0 (s)j = t0 (s) j�0 (t)j = 1

s0 (t)
j�0 (t)j = 1

j�0 (t)j j�
0 (t)j = 1; 8 s 2 J: (2)

Thus if a curve is parametrized by arc length parameter s; its tangent vector is of unit length
everywhere. Conversely if � (t) is a regular curve with j�0 (t)j = 1 everywhere, then by (1) we
have

s =

Z t

t0

1dt = t� t0;

which means that t = s + t0 is the arc length of � measured from the point t0. Note that one can
always use arc length parameter s to parametrize a regular curve �:

Remark 1.13 From now on, to simplify our exposition, we shall restrict ourselves to curves para-
metrized by arc length parameter s: We shall see later that this restriction is not essential (as long
as the curve is regular). In general, it is not necessary to mention the origin of the arc length s
since most important geometric quantities are expressed only in terms of the derivatives of � (s) :

De�nition 1.14 Given � (s) ; s 2 (a; b) ; the curve
� (s) = � (�s) ; s 2 (�b;�a) (3)

is called a change of orientation of the curve �: It has the same trace as �; but is described in the
opposite direction. Note that (3) implies �0 (s) = ��0 (�s) ; i.e. the direction of the tangent vector
is reversed.

Remark 1.15 Another parametrization for a change of orientation is to let � (s) = � (a+ b� s) ; s 2
(a; b) :

Remark 1.16 In p. 7 of the textbook, correct "� (�s) = � (s)" as "� (s) = � (�s)"; s 2 (�b;�a) :
Remark 1.17 This is to explain the statement in p. 6: "Since �0 (t) 6= 0; the arc length s is a
di¤erentiable (which means has derivatives of all orders) function of t and ds=dt = j�0 (t)j :". This
is because we have

ds

dt
= j�0 (t)j =

h
(x0 (t))

2
+ (y0 (t))

2
+ (y0 (t))

2
i1=2

;

where (x0 (t))2+(y0 (t))2+(y0 (t))2 > 0; and so we can compute d2s=dt2; d3s=dt3; :::; etc. Therefore,
s is a di¤erentiable function of t.

Remark 1.18 Any regular curve � (t) : I ! R3 can be parametrized by arc length para-
meter s (unique up to the choice of the origin of the arc length). This is because we have ds=dt =
j�0 (t)j > 0 for all t 2 I; then by the Inverse Function Theorem, the correspondence s  ! t has
smooth inverse, i.e. the variable t 2 I can be expressed as a smooth function of s 2 J (some
interval). By this we have � (t) = � (t (s)) : s 2 J ! R3; which becomes a di¤erentiable curve
parametrized by arc length parameter s:

Exercise 1.19 Do exercise 1, 2, 4, 6, 8, 10 in p. 7.

Exercise 1.20 It is known that there is a continuous map � : [0; 1] ! R2 whose image is the
whole closed square [0; 1]� [0; 1] in R2. Explain that it cannot happen if we assume � : I ! R2
is a regular parametrized di¤erentiable curve.

3



1.4 The Vector Product in R3 (this is section 1-4 of the book).
De�nition 1.21 Let e = fe1; e2; e3g and f = ff1; f2; f3g be two ordered bases of the vector
space R3: We say they have the same orientation if the 3 � 3 matrix of change of basis (ex-
plain this) has positive determinant. We denote this relation by e � f:

Remark 1.22 Using the relation

det
�
A�1

�
=

1

detA
; detAT = detA; det (AB) = (detA) (detB)

one can easily check that the relation � is an equivalence relation (i.e., (1) : e � e; (2) : if
e � f; then f � e; (3) : if e � f and f � g; then e � g) among all ordered bases of R3:

De�nition 1.23 Since the determinant of a change of basis is either positive or negative, there
are only two such classes. Each of the equivalence classes determined by the above relation is called
an orientation of R3: Hence R3 has two orientations. If we �x one of them, the other one is called
the opposite orientation. The orientation containing the standard basis f(1; 0; 0) ; (0; 1; 0) ; (0; 0; 1)g
will be called the positive orientation. An ordered basis fu; v; wg is called positive if fu; v; wg �
f(1; 0; 0) ; (0; 1; 0) ; (0; 0; 1)g (otherwise we call it negative): Thus fu; v; wg is positive if and only if

det

0@ u1 u2 u3
v1 v2 v3
w1 w2 w3

1A > 0;

where u = (u1; u2; u3) ; v = (v1; v2; v3) ; w = (w1; w2; w3) :

Remark 1.24 We have encountered the concept of orientation in daily life. For example, on R2 we
have "clockwise orientation" or "counterclockwise orientation" in turning faucets or screws.

In linear algebra, there is the following result:

Lemma 1.25 If T : R3 ! R is a linear transformation, then there exists an unique vector s 2 R3
such that

T (w) = s � w; 8 w 2 R3; (4)

where � denotes the inner product in R3: The result remains true if we replace R3 by Rn:

By the above lemma, we can de�ne the following:

De�nition 1.26 For �xed u and v in R3; the map T : R3 ! R given by

T (w) = det (u; v; w) (= det (w; u; v)) ; w 2 R3 (5)

is a linear transformation. By Lemma 1.25, the unique vector s 2 R3 in (4) is called the vector
product (or cross product) of u and v and is denoted as u ^ v 2 R3: Therefore, we have

det (u; v; w) = (u ^ v) � w; 8 w 2 R3; (6)

which is the same as
det (w; u; v) = w � (u ^ v) ; 8 w 2 R3: (7)

Remark 1.27 In Rn with n > 3; there in no corresponding concept for the vector product of two
vectors. Instead, we can de�ne the vector product u1^���^ un�1 2 Rn of n�1 vectors u1; :::; un�1 2
Rn by the identity

det (u1; :::; un�1; w) = (u1 ^ � � � ^ un�1) � w; 8 w 2 Rn: (8)
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Lemma 1.28 If we express u = (u1; u2; u3) ; v = (v1; v2; v3) ; then from the de�nition we can obtain

u ^ v =
���� u2 u3
v2 v3

���� e1 � ���� u1 u3
v1 v3

���� e2 + ���� u1 u2
v1 v2

���� e3;
which can be formally written as (for convenience of memory)

u ^ v = det

0@ e1 e2 e3
u1 u2 u3
v1 v2 v3

1A
and they have the following properties:

1. u ^ v = � (v ^ u) :

2. u ^ v depends linearly on u and v: That is, for any a; b 2 R and any u; v; w 2 R3 we have

(au+ bw) ^ v = au ^ v + bw ^ v:

3. u ^ v = 0 if and only if u; v are linearly dependent.

4. (u ^ v) � u = (u ^ v) � v = 0; i.e. u ^ v is perpendicular to both u and v:

5. If u ^ v 6= 0; then fu; v; u ^ vg is a positive basis due to

det (u; v; u ^ v) = (u ^ v) � (u ^ v) = ju ^ vj2 > 0:

6. For any 4 vectors u; v; x; y 2 R3; we have

(u ^ v) � (x ^ y) =
���� u � x u � y
v � x v � y

���� : (9)

In particular, we have

ju ^ vj2 =
���� u � u u � v
v � u v � v

���� = juj2 jvj2 �1� cos2 �� = A2; (10)

where � 2 [0; �] is the angle between u and v; and A is the area of the parallelogram generated
by u; v:

Remark 1.29 (Remark on p. 14.) It is better to write the top identity in p. 14 as

(u ^ v) � (x ^ y) =
���� u � x u � y
v � x v � y

���� �not ���� u � x v � x
u � y v � y

����� :
Then it is easier to remember. By this, we have

(u ^ v) � (x ^ y) = det
�
ATB

�
; A = (u; v) ; B = (x; y)

where A = (u; v) (view u; v as column vectors); B = (x; y) (view x; y as column vectors). This
will be consistent with the identities in p. 16 and 17. Remember that in the 1-dimensional case, we
have u � x = det

�
uTx

�
(view u; x as column matrices).
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7. For any 3 vectors u; v; w 2 R3; we have

(u ^ v) ^ w = (u � w) v � (v � w)u: (11)

In particular, we note that

(u ^ v) ^ w (lies on uv-plane) 6= u ^ (v ^ w) (lies on vw-plane).

Therefore, the vector product is not associative. InR3; the notation u^v^w can be confusing
(however, in R4 the notation u ^ v ^ w makes sense).

8. For any two di¤erentiable maps u (t) : (a; b)! R3; v (t) : (a; b)! R3; we have

d

dt
(u (t) ^ v (t)) = du

dt
^ v (t) + u (t) ^ dv

dt
; t 2 (a; b) :

Proof. We only prove (11). Since (u ^ v) ^ w is linear in u; v; w; it su¢ ces to look at (ei ^ ej) ^
ek; where 1 � i; j; k � 3 (here fe1; e2; e3g is the standard basis in R3). If i = j; then (11) clearly
holds. Therefore, we look at i 6= j and can also assume that i < j (otherwise we change ei and
ej). We have the following 9 cases to verify:8>><>>:

(e1 ^ e2) ^ e1; (e1 ^ e2) ^ e2; (e1 ^ e2) ^ e3 (this is 0)

(e1 ^ e3) ^ e1; (e1 ^ e3) ^ e2 (this is 0); (e1 ^ e3) ^ e3

(e2 ^ e3) ^ e1 (this is 0); (e2 ^ e3) ^ e2; (e2 ^ e3) ^ e3:

You can verify them by yourself. �

Exercise 1.30 Do exercise 2, 5, 8, 10, 11, 12, 13 in p. 15.

1.5 The Local Theory of Curves Parametrized by Arc Length (this is
section 1-5 of the book).

Remark 1.31 From now on, the parameter s is reserved for arc length parameter unless oth-
erwise stated.

From now on, we only focus on a regular curve � : I ! R3 with �0 (t) 6= 0 for all t 2 I: We can
always reparametrize it by arc length parameter s: In the following, we always assume � : I ! R3 is
a regular curve parametrized by arc length parameter s 2 I: It satis�es j�0 (s)j = 1 for all s 2 I:

De�nition 1.32 Let � : I ! R3 be a curve parametrized by arc length s 2 I: The number

k (s) := j�00 (s)j =
���� dtds (s)

���� = jt0 (s)j � 0; s 2 I (12)

is called the curvature of � at s; where t (s) = �0 (s) is the unit tangent vector of � at s:

Remark 1.33 By de�nition, the curvature k (s) cannot be negative. k (s0) measures the rate of
change of the tangent vectors near s with the tangent vector at s: See Section 1.5.1 below
also.

Lemma 1.34 A regular curve � (s) : I ! R3 has k (s) � 0 everywhere if and only if it is a straight
line (or part of it) in R3.
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Proof. If � is straight line, since j�0 (s)j = 1 everywhere, we must have � (s) = us + v for some
constant vectors u; v 2 R3 (with juj = 1). Hence k (s) = j�00 (s)j = 0 everywhere. Conversely
if k (s) = j�00 (s)j � 0; then �00 (s) = 0 and so �0 (s) = u for some unit constant vector. Hence
� (s) = us+ v and the curve is a straight line. �

Remark 1.35 If we let � (s) = � (�s) ; then � is a change of orientation of the curve �: One
trivially has

�0 (s) = ��0 (�s) ; �00 (s) = �00 (�s) :
Therefore �00 (s) and the curvature k (s) remain invariant under a change of orientation. Draw a
picture to explain this ....

De�nition 1.36 At points where k (s) 6= 0 (i.e., k (s) > 0) a unit vector n (s) in the direction
�00 (s) is well-de�ned by the equation

�00 (s) =
dt

ds
(s) = k (s)n (s) ; k (s) > 0;

i.e. we de�ne

n (s) =
�00 (s)

j�00 (s)j =
�00 (s)

k (s)
; jn (s)j = 1: (13)

By the identity d
ds
(�0 (s) � �0 (s)) = 0; n (s) is perpendicular to the unit tangent vector t (s) = �0 (s) :

We call it the normal vector of � at s: The plane determined by the two vectors t (s) and n (s) is
called the osculating plane of � at s:

Remark 1.37 At points where k (s) = 0; the normal vector n (s) is unde�ned (so is the osculating
plane). If k (s) = 0 (same as �00 (s) = 0); we say � has a zero curvature point at s (the terminology
is di¤erent from textbook; also note that we always have �0 (s) 6= 0 for all s because it is an unit
vector). Since the osculating plane is essential for us to study a regular curve, we shall restrict
ourselves to curves parametrized by arc length without zero curvature point, i.e. we focus only on
curves � (s) with k (s) > 0 everywhere.

Remark 1.38 If � (s) = � (�s) is a change of orientation of the curve �; then

t� (s) = �t� (�s) ; n� (s) = n� (�s) : (14)

1.5.1 Geometric Meaning of the Curvature k (s).

Note that for a regular curve we have j�0 (s)j = 1 for all s: From now on, we also assume
k (s) > 0 for all s unless otherwise stated. This implies

h�00 (s) ; �0 (s)i = 0; 8 s

and then

0 =
d

ds
h�00 (s) ; �0 (s)i

= h�000 (s) ; �0 (s)i+ h�00 (s) ; �00 (s)i = h�000 (s) ; �0 (s)i+ k2 (s) ; 8 s: (15)

Now if we have two nearby tangent vectors �0 (s0) 2 R3 and �0 (s0 + h) 2 R3; h 2 (�"; ") small,
their small angle � (h) � 0; � (h) 2 [0; �); is given by the identity

h�0 (s0) ; �0 (s0 + h)i = cos � (h) ; � (h) = cos�1 h�0 (s0) ; �0 (s0 + h)i � 0; � (0) = 0: (16)
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Note that here the angle � (h) between �0 (s0) 2 R3 and �0 (s0 + h) 2 R3 is always taken to be
nonnegative. Therefore, the limit

�0 (0) = lim
h!0

� (h)� � (0)
h

= lim
h!0

� (h) (nonnegative)
h (positive or negative)

(17)

does not exist in general (use a picture to convince yourself; see Lemma 1.41 below).
By the above observation, we can only look at �0 (0+) or �0 (0�) :
To go on, we need the following calculus result:

Lemma 1.39 For constant a > 0; we have

lim
h!0+

cos�1 (1� ah)
h

does not exist (18)

and

lim
h!0+

cos�1 (1� ah2)
h

=
p
2a; lim

h!0�
cos�1 (1� ah2)

h
= �
p
2a (19)

and

lim
h!0+

cos�1 (1� ah3)
h

= 0: (20)

Remark 1.40 By (19) and (20), one can show that

lim
h!0+

cos�1 (1� ah2 +O (h3))

h
=
p
2a; (21)

where O (h3) is any quantity depending on h satisfying����O (h3)h3

���� �M; 8 h 2 (0; ") (22)

for some constant M > 0 and some small constant " > 0:

Proof. Exercise. �

Now we can state the following:

Lemma 1.41 Let � (s) be a regular curve with k (s) > 0 for all s: The angle � (h) de�ned in (16)
satis�es

�0 (0+) = k (s0) ; �0 (0) does not exist, �0 (0�) = �k (s0) : (23)

Remark 1.42 The curvature k (s0) = �0 (0+) measures the rate of change of angles � (h) between
two nearby unit tangent vectors t (s0) 2 R3 and t (s0 + h) 2 R3; h > 0. Here the derivative �0 (0+)
is with respect to the arc length parameter (note that h is arc length parameter).

Proof. We prove the �rst identity only. For �xed s0 and small h 2 (�"; ") we let

g (h) = h�0 (s0) ; �0 (s0 + h)i = cos � (h) ; h 2 (�"; ") ; g (h) 2 (1� �; 1]:

Note that g (h) is a C1 function on (�"; ") with g (0) = 1; g0 (0) = 0; and by the Taylor Theorem
and (15) we have

g (h) = g (0) + g0 (0)h+
1

2!
g00 (0)h2| {z }+

\�
1

3!
g000 (0)h3 + � � �

�
= 1 +

1

2
h�0 (s0) ; �000 (s0)i| {z }h2 + \O (h3) (big O notation)

= 1� 1
2
k2 (s0)h

2 +O
�
h3
�
; g (h) 2 (1� �; 1]:
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Hence

� (h) = cos�1 g (h) = cos�1
�
1� 1

2
k2 (s0)h

2 +O
�
h3
��
� 0; � (0) = 0; h 2 (�"; ") ;

which gives

� (h)� � (0)
h

=
cos�1

�
1� 1

2
k2 (s0)h

2 +O (h3)
�

h
; h 6= 0 2 (�"; ") ; � (0) = 0: (24)

By (21), we have

�0 (0+) = lim
h!0+

cos�1
�
1� 1

2
k2 (s0)h

2 +O (h3)
�

h
= k (s0)

and similarly �0 (0�) = �k (s0) ; and �0 (0) does not exist (since k (s0) > 0). The proof is done. �

Remark 1.43 In case k (s0) = 0; then the limit

lim
h!0

cos�1 (1 +O (h3))

h
= 0:

In such a case, � (h) is di¤erentiable at h = 0 with �0 (0+) = �0 (0�) = �0 (0) = 0:

Remark 1.44 (Another intuitive quick way to see Lemma 1.41.) We let � (s) = �0 (s) :
Then � (s) is a space curve lying on the sphere S2: It is a regular curve due to �0 (s) = �00 (s) 6=
0 for all s 2 I (however, s may not be arc length parameter for � (s)). At �xed s = s0; the three
points O = (0; 0; 0) ; A = �0 (s0) and B = �0 (s0 + h) lie on the same plane and the same circle
with radius 1 and the angle between OA and OB is � (h) � 0: When h 2 (�"; ") is small, we have
(imagine A 2 S2 is the north pole)

� (h) = circle arc length joining A; B; � (h) � 0
� arc length of the curve � between A; B

=

8<:
R s0+h
s0

j�00 (s)j ds; h 2 (0; ")R s0
s0+h
j�00 (s)j ds; h 2 (�"; 0) :

(25)

Therefore, we have

�0 (0+) = j�00 (s0)j = k (s0) ; �0 (0�) = � j�00 (s0)j = �k (s0) : (26)

Remark 1.45 If the curve � (s) is a plane curve, then there is a convention to give the curvature
k (s) a sign (called signed curvature); see p. 22 of the textbook. In such a case, the angle � (s) can
be positive or negative (in plane we have clockwise and counterclockwise orientation,
but in space we do not have) and � (s) is a di¤erentiable function of s everywhere with
�0 (s) = k (s) for all s: See p. 23, Exercise 3.

1.5.2 Geometric Meaning of the Torsion � (s).

De�nition 1.46 Let � (s) be a regular curve with k (s) > 0 for all s: We know that the normal
vector n (s) is well-de�ned everywhere. The unit vector

b (s) := t (s) ^ n (s) ; jb (s)j = 1; hb (s) ; b0 (s)i � 0 (27)

is called the binormal vector of � at s: This vector b (s) is always perpendicular to the osculating
plane at s: The three vectors ft (s) ; n (s) ; b (s)g forma a positive basis in R3:

9



Remark 1.47 If � (s) = � (�s) is a change of orientation of the curve �; then b� (s) = �b� (�s) :
This is due to (27).

Compute

b0 (s) = t0 (s) ^ n (s) + t (s) ^ n0 (s) = t (s) ^ n0 (s) ; t0 (s) = k (s)n (s)

and we know that the vector b0 (s) is perpendicular to both b (s) and t (s) ; and so it must be pointing
in the direction of n (s) : We may write

b0 (s) = � (s)n (s) (28)

for some function � (s) : The quantity jb0 (s)j measures the rate of change of the osculating planes
near s with the osculating plane at s:

De�nition 1.48 Let � : I ! R3 be a regular curve with k (s) > 0 everywhere. The number � (s)
de�ned by b0 (s) = � (s)n (s) is called the torsion of � at s: Unlike the curvature k (s) ; the torsion
of a space curve � (s) can be either positive or negative. The sign of � has a geometric meaning.

Remark 1.49 (Important.) The curvature k (s) is a second derivative quantity. The torsion
� (s) is a third derivative quantity.

Remark 1.50 If � (s) = � (�s) is a change of orientation of the curve �; then b� (s) = �b� (�s) we
get b0� (s) = b0� (�s) ; which implies that �� (s)n� (s) = �� (�s)n� (�s) : Since n� (s) = n� (�s) ; we
have �� (s) = �� (�s) :

We can conclude the following:

Lemma 1.51 Let � : I ! R3 be a regular curve with k (s) > 0 everywhere. Then the curvature
k (s) and the torsion � (s) are invariant under change of orientation.

The quantity � (s) can measure whether � (s) is a plane curve or not. We have:

Lemma 1.52 Let � : I ! R3 be a regular curve with k (s) > 0 everywhere. Then � (s) is a plane
curve (i.e. � (I) is contained in a plane P ) if and only if � (s) � 0 for all s 2 I:

Remark 1.53 The condition k (s) > 0 everywhere in the above lemma is necessary. If k (s) = 0
somewhere, it is possible to have a non-planar curve with � (s) � 0 everywhere. See Exercise 10
in p. 26 of the textbook.

Proof. (=)) : This is clear since now both t (s) and n (s) lie on the plane P ; hence b (s) is a
constant unit vector perpendicular to P:

((=) : Since k (s) > 0 everywhere, the vector b (s) is everywhere de�ned with b0 (s) � 0 every-
where (due to � (s) � 0). Thus b (s) = b0 is a constant for all s; and

d

ds
h� (s) ; b0i = ht (s) ; b0i = ht (s) ; b (s)i = 0; 8 s 2 I:

Therefore, h� (s) ; b0i must be a constant and � (s) is a plane curve with image contained in a plane
perpendicular to b0: �

Remark 1.54 (Important.) Physically we can think of a curve in R3 as being obtained from a
straight line by bending (curvature) and twisting (torsion). Hence we are led to the fact that k (s)
and � (s) completely determine the local behavior (and also global behavior) of the curve. See
the Fundamental Theorem in p. 20 of the book.
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Assume that k (s) > 0 everywhere so that t (s) ; n (s) ; b (s) are de�ned everywhere. We �rst
have

hb (s) ; b (s)i = 1; hb0 (s) ; b (s)i = 0; 8 s
and then

0 =
d

ds
hb0 (s) ; b (s)i = hb00 (s) ; b (s)i+ hb0 (s) ; b0 (s)i = hb00 (s) ; b (s)i+ � 2 (s) : (29)

Now if we have two nearby binormal vectors b (s0) 2 R3 and b (s0 + h) 2 R3; h 2 (�"; ") small,
their small angle � (h) � 0; � (h) 2 [0; �); is given by the identity

hb (s0) ; b (s0 + h)i = cos � (h) ; � (h) = cos�1 hb (s0) ; b (s0 + h)i � 0; � (0) = 0: (30)

We have the following result similar to Lemma 1.41:

Lemma 1.55 Let � (s) be a regular curve with k (s) > 0 for all s: The angle � (h) de�ned in (30)
satis�es

�0 (0+) = j� (s0)j ; �0 (0) does not exist, �0 (0�) = � j� (s0)j : (31)

Proof. For �xed s0 and small h 2 (�"; ") we let
g (h) = hb (s0) ; b (s0 + h)i = cos � (h) ; h 2 (�"; ") ; g (h) 2 (1� �; 1]:

Note that g (h) is a C1 function on (�"; ") with g (0) = 1; g0 (0) = 0; and by the Taylor Theorem
and (29) we have

g (h) = g (0) + g0 (0)h+
1

2!
g00 (0)h2| {z }+

\�
1

3!
g000 (0)h3 + � � �

�
= 1 +

1

2
hb (s0) ; b00 (s0)i| {z }h2 + \O (h3) (big O notation)

= 1� 1
2
� 2 (s0)h

2 +O
�
h3
�
; g (h) 2 (1� �; 1]:

Hence

� (h) = cos�1 g (h) = cos�1
�
1� 1

2
� 2 (s0)h

2 +O
�
h3
��
� 0; � (0) = 0; h 2 (�"; ") :

which gives

� (h)� � (0)
h

=
cos�1

�
1� 1

2
� 2 (s0)h

2 +O (h3)
�

h
; h 2 (�"; ") ; � (0) = 0: (32)

By Lemma 1.39, we have (one can ignore the smallest term O (h3))

�0 (0+) = lim
h!0+

cos�1
�
1� 1

2
� 2 (s0)h

2 +O (h3)
�

h

= lim
h!0+

cos�1
�
1� 1

2
� 2 (s0)h

2
�

h
=

r
2 � 1
2
� 2 (s0) = j� (s0)j :

and similarly �0 (0�) = � j� (s0)j ; and �0 (0) does not exist if � (s0) 6= 0. The proof is done. �
Remark 1.56 Similar to (25) in Remark 1.44, for small h 2 (�"; ") ; we have

� (h) �

8<:
R s0+h
s0

jb0 (s)j ds; h 2 (0; ")R s0
s0+h
jb0 (s)j ds; h 2 (�"; 0)

; � (h) � 0 (33)

and so
�0 (0+) = jb0 (s0)j = j� (s0)j and �0 (0�) = � jb0 (s0)j = � j� (s0)j : (34)

Thus j� (s0)j = �0 (0+) measures the rate of change of angles � (h) of two nearby binormal
vectors b (s0) and b (s0 + h) (or two nearby osculating planes of �); h > 0.
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1.5.3 Frenet Frame of a Space Curve.

De�nition 1.57 Let � (s) be a regular curve with k (s) > 0 for all s: The three orthonormal vectors
ft (s) ; n (s) ; b (s)g in R3 is referred to as the Frenet trihedron (or Frenet frame) of � at s: It
has positive orientation (in the order of t (s) ; n (s) ; b (s)).

Lemma 1.58 Let � : I ! R3 be a regular curve with k (s) > 0 everywhere. We have the following
Frenet frame equations (or just Frenet equations)8>><>>:

t0 (s) = k (s)n (s) ;

n0 (s) = �k (s) t (s)� � (s) b (s) ;

b0 (s) = � (s)n (s)

(35)

for all s 2 I:

Remark 1.59 (Important observation.) Since there is no other geometric quantities (other
than k (s) and � (s)) appearing on the right hand side of (35), the behavior of a space curve � (s) is
completely determined by k (s) and � (s) : See Theorem 1.72 below.

Proof. It su¢ ces to check the second equation

n0 (s) = (b ^ t)0 (s) = b0 (s) ^ t (s) + b (s) ^ t0 (s)
= [� (s)n (s)] ^ t (s) + b (s) ^ [k (s)n (s)] = �� (s) b (s)� k (s) t (s) :

The proof is done. �

Remark 1.60 If a space curve � happens to lie on a plane, then there is no torsion � (s) (� (s) �
0 for all s) and b (s) is a constant vector and the Frenet frame equation becomes

d

ds

�
t0 (s)
n0 (s)

�
=

�
0 k (s)
�k (s) 0

��
t (s)
n (s)

�
; b0 (s) = 0: (36)

It is more convenient to write theFrenet frame equations in thematrix form (just formally):0@ t0 (s)
n0 (s)
b0 (s)

1A =

0@ 0 k (s) 0
�k (s) 0 �� (s)
0 � (s) 0

1A0@ t (s)
n (s)
b (s)

1A ;

0@ t (s)
n (s)
b (s)

1A 2 R9: (37)

Note that the coe¢ cient matrix M (s) is anti-symmetric, i.e. MT (s) = �M (s) for all s 2 I:

Lemma 1.61 Let fv1 (t) ; v2 (t) ; :::; vn (t)g ; t 2 I; be a time-dependent basis in Rn with v0i (t) =Pn
j=1 aij (t) vj (t) ; 1 � i � n: We have:

1. In fv1 (t) ; v2 (t) ; :::; vn (t)g is orthonormal for all t 2 I; then the matrix M (t) = (aij (t))n�n 2
M (n) is anti-symmetric for all t 2 I:

2. Let M 2 M (n) be anti-symmetric. We have hv;Mvi = 0 for all v 2 Rn: Also, if n is odd,
then detM = 0:

3. Let M (t) = (aij (t))n�n 2M (n) be anti-symmetric for all t 2 I. Formally, we have

*0BBB@
v1 (t)
v2 (t)
...

vn (t)

1CCCA ; M (t)

0BBB@
v1 (t)
v2 (t)
...

vn (t)

1CCCA
+
= 0; 8 t 2 I (38)
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for all v1 (t) ; v2 (t) ; :::; vn (t) 2 Rn; where the inner product in (38) means:*
v1 (t) ;

nX
j=1

a1j (t) vj (t)

+
+

*
v2 (t) ;

nX
j=1

a2j (t) vj (t)

+
+ � � �+

*
vn (t) ;

nX
j=1

anj (t) vj (t)

+
:

(39)

Proof. Exercise. �

The following is about the computation of � (s) in terms of � (s) :

Lemma 1.62 In terms of � (s) ; the torsion � (s) can be expressed as

� (s) = �(�
0 (s) ^ �00 (s)) � �000 (s)

k2 (s)
= �det (�

0 (s) ; �00 (s) ; �000 (s))

j�00 (s)j2
: (40)

Remark 1.63 From (40) we see that the torsion � (s) is a third derivative object, while the cur-
vature k (s) is a second derivative object. Also, from (40) we see that the torsion � (s) is invariant
under change of orientation.

Proof. (This is a homework problem in the book.) We have

�000 (s) =
d

ds
(k (s)n (s)) = k0 (s)n (s) + k (s) [�k (s) t (s)� � (s) b (s)]

= �k2 (s) t (s) + k0 (s)n (s)� k (s) � (s) b (s)| {z } : (41)

Hence

(�0 (s) ^ �00 (s)) � �000 (s)
= k (s) [t (s) ^ n (s)] �

�
�k2 (s) t (s) + k0 (s)n (s)� k (s) � (s) b (s)

�
= k (s) [t (s) ^ n (s)] � [�k (s) � (s) b (s)]
= k (s) b (s) � [�k (s) � (s) b (s)] = �k2 (s) � (s) :

The proof is done. �

Remark 1.64 By (41), we have(
h�000 (s) ; �0 (s)i = �k2 (s) ; h�000 (s) ; �00 (s)i = k (s) k0 (s) ;

h�000 (s) ; �0 (s) ^ �00 (s)i = �k2 (s) � (s)
(42)

and by (41), we have

j�000 (s)j =
q
k4 (s) + (k0 (s))2 + k2 (s) � 2 (s) � k (s)

p
k2 (s) + � 2 (s): (43)

Remark 1.65 (Di¤erentiability of curvature and torsion.) Let

J = fs 2 I : j�00 (s)j > 0g � I:

Then k (s) and � (s) are di¤erentiable functions on the open interval J (use (40) and k (s) =
j�00 (s)j): In particular, if we assume � : I ! R3 is a regular curve with k (s) = j�00 (s)j >
0 everywhere, then k (s) and � (s) are di¤erentiable functions on the domain interval I:
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De�nition 1.66 The tb plane is called rectifying plane. The nb plane is called normal plane.
The line passing through � (s) containing n (s) is called principal normal and the line passing
through � (s) containing b (s) is called binormal.

De�nition 1.67 The number R (s) = 1=k (s) is called the radius of curvature of � at s:

Example 1.68 A circle � (s) in R3 with radius r > 0 has constant curvature k = 1=r everywhere.
To see this, we �rst note that � (s) is a plane curve. Without loss of generality, we may assume it
lies on the xy-plane parametrized by arc length parameter s by the following:

� (s) =
�
r cos

s

r
; r sin

s

r

�
; s 2 (0; 2�r) ; j�0 (s)j = 1:

Then we have k (s) = j�00 (s)j = 1=r for all s 2 (0; 2�r) :

The converse of the above example does not hold. One can �nd a space curve � (s) : I ! R3 with
constant curvature k but it is not a circle. See the helix example in Exercise 1, p. 23 (a helix has
constant curvature and constant torsion; the converse is also true !!!). However,if � (s) is
a plane curve, it is correct. We have:

Lemma 1.69 (Plane curves with constant curvature must be circles.) Let � : I ! R3 be a
regular curve with k (s) > 0 everywhere. If � (s) is a plane curve (equivalent to � (s) � 0 for all
s 2 I by Lemma 1.52) and k (s) = k > 0 is a constant for all s 2 I; then � (I) lies on a circle
with radius r = 1=k:

Proof. Without loss of generality, we assume � (s) = (x (s) ; y (s) ; 0) lies on the xy-plane. For
convenience, we can just write it as � (s) = (x (s) ; y (s)). We have j�0 (s)j2 = 1 and j�00 (s)j2 =
k (constant) for all s; which implies

�0 (s) � �00 (s) = 0; �00 (s) � �000 (s) = 0; 8 s 2 I;

where by (41) we have
�000 (s) = �k2t (s) = �k2�0 (s) ;

and we conclude
d

ds

�
�00 (s) + k2� (s)

�
= 0; 8 s 2 I

and so there is a constant vector � such that �00 (s) + k2� (s) = � for all s 2 I: By a translation
(replace � (s) by � (s) + p; p 2 R3), without loss of generality, we may assume � = 0 and obtain
the vector equation

�00 (s) + k2� (s) = 0; 8 s 2 I:
Now taking inner product of the above ODE with respect to �0 (s) to get

0 =
�
�00 (s) + k2� (s)

�
� �0 (s) = k2� (s) � �0 (s) = k2

2

d

ds
j� (s)j2 ; 8 s 2 I;

which gives
j� (s)j2 = C (some positive constant), 8 s 2 I:

Therefore, � (s) lies on the circle centered at (0; 0) with radius r = 1=k (since � (s) has constant
curvature k > 0): The proof is done. �

14



1.5.4 Variation of Frenet Equations.

Recall the Frenet equations, which are0@ t0 (s)
n0 (s)
b0 (s)

1A =

0@ k (s)n (s)
�k (s) t (s)� � (s) b (s)

� (s)n (s)

1A
=

0@ 0 k (s) 0
�k (s) 0 �� (s)
0 � (s) 0

1A0@ t (s)
n (s)
b (s)

1A :=M (s)

0@ t (s)
n (s)
b (s)

1A (44)

where ft (s) ; n (s) ; b (s)g is the Frenet frame along � (s) ; s 2 I and M (s) is an anti-symmetric
3� 3 matrix with

detM (s) = det

0@ 0 k (s) 0
�k (s) 0 �� (s)
0 � (s) 0

1A = 0; 8 s 2 I

We can rewrite (44) as the following form, which we call it Darboux equations:8>><>>:
t0 (s) = [�� (s) t (s) + k (s) b (s)] ^ t (s)

n0 (s) = [�� (s) t (s) + k (s) b (s)] ^ n (s)

b0 (s) = [�� (s) t (s) + k (s) b (s)] ^ b (s) ;

(45)

which can be formally written as

F0 (s) = ! (s) ^ F (s) ; F0 (s) =

0@ t0 (s)
n0 (s)
b0 (s)

1A ; ! (s) ^ F (s) =

0@ ! (s) ^ t (s)
! (s) ^ n (s)
! (s) ^ b (s)

1A : (46)

The vector
! (s) = �� (s) t (s) + k (s) b (s) 2 R3 (47)

is called the Darboux rotation vector (or angular velocity) of � at s.

Remark 1.70 It is actually quite easy to obtain the Darboux rotation vector given by (??). Assume
the existence of Darboux rotation vector ! (s) ; which is required to satisfy the property

t0 (s) = ! (s) ^ t (s) ; n0 (s) = ! (s) ^ n (s) ; b0 (s) = ! (s) ^ b (s) ; 8 s 2 I: (48)

Then it is easy to �nd its explicit form. We can express ! (s) as

! (s) = A (s) t (s) +B (s)n (s) + C (s) b (s) ; s 2 I

for some coe¢ cient functions A (s) ; B (s) ; C (s) : Then by

k (s)n (s)| {z } = t0 (s) = ! (s) ^ t (s)

= [A (s) t (s) +B (s)n (s) + C (s) b (s)] ^ t (s) = �B (s) b (s) + C (s)n (s)| {z };
which gives C (s) = k (s) ; B (s) = 0; and so ! (s) = A (s) t (s) + k (s) b (s) for some A (s) : Then
we look at

� (s)n (s)| {z } = b0 (s) = ! (s) ^ b (s)

= [A (s) t (s) + k (s) b (s)] ^ b (s) = �A (s)n (s)| {z };
15



which gives A (s) = �� (s) : Therefore, we conclude

! (s) = �� (s) t (s) + k (s) b (s) :

Finally, we check that the above ! (s) also satis�es the identity n0 (s) = ! (s) ^ n (s) : We have

n0 (s) = �k (s) t (s)� � (s) b (s)| {z }
and

! (s) ^ n (s) = [�� (s) t (s) + k (s) b (s)] ^ n (s) = �� (s) b (s)� k (s) t (s)| {z };
as veri�ed. Therefore, we conclude the existence of such a Darboux rotation vector ! (s) satisfying
(48) and it is given explicitly by

! (s) = �� (s) t (s) + k (s) b (s) ; s 2 I: (49)

Remark 1.71 By (45), the Darboux rotation vector ! (s) (! (s) = �� (s) t (s) + k (s) b (s) 6=
0 due to k (s) > 0) is perpendicular to t0 (s) ; n0 (s) and b0 (s) : In particular, the three vectors
ft0 (s) ; n0 (s) ; b0 (s)g are linearly dependent. They only span a plane P perpendicular to ! (s).
This can be seen from the Frenet equation (44), which says that t0 (s) and b0 (s) are lying on the
same line L (pointing in the direction of n (s)). Therefore, the plane P is spanned by L and n0 (s) :

1.5.5 Fundamental Theorem of the Local Theory of Curves in R3.

Theorem 1.72 (Fundamental theorem of space curves.) Let I be an open interval and k0; �0 :
I ! R be two di¤erentiable functions with k0 (s) > 0 for each s 2 I:Then there exists a regular
curve � : I ! R3; such that s 2 I is the arc length parameter of � and its curvature k� and
torsion �� are given by

k� (s) = k0 (s) and �� (s) = �0 (s) ; 8 s 2 I: (50)

Moreover, if �� : I ! R3 is another space curve (also parametrized by arc length) satisfying (50), then
there exists a rigid motion (see the de�nition below) T : R3 ! R3 such that �� = T � �: Note that
a rigid motion T : R3 ! R3 preserves the orientation of R3, i.e. detT = +1:

Remark 1.73 (Important.) The above theorem fails if we replace the condition k0 (s) > 0 for
each s 2 I by k0 (s) � 0 for each s 2 I: Use a simple picture to explain this. See Remark 1.90.

Remark 1.74 A rigid motion T : R3 ! R3 has the form

Tx = Ax+ b; A 2 O (3) ; b 2 R3; (51)

where A is a 3 � 3 orthogonal matrix (i.e. ATA = I or hAx;Ayi = hx; yi for all x; y 2 Rn)
with detA = 1 and b 2 R3 is a constant vector. Note that an orthogonal matrix A has detA =
�1: If detA = +1; it preserves the orientation of an ordered basis; if detA = �1; it reverses the
orientation.

We shall not give a complete proof of the theorem (need to use the existence and uniqueness
result for a system of �rst order linear equation). However, a proof of the uniqueness (up to rigid
motions) of curves having the same s; k0 (s) and �0 (s) is easy.
To prove it, we �rst observe the following:

Lemma 1.75 If two space curves � (s) ; �� (s) ; s 2 I; are related by �� (s) = T (� (s)) for all s 2 I;
where T : R3 ! R3 is a rigid motion, then

k�� (s) = k� (s) and ��� (s) = �� (s) ; 8 s 2 I: (52)
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Remark 1.76 (Important.) If T : R3 ! R3 has the form (51) but with detA = �1; then we have

k�� (s) = k� (s) and ��� (s) = ��� (s) ; 8 s 2 I: (53)

Proof. (Read it yourself.) Let Tx = Ax + b; where A is orthogonal (ATA = I) with detA =
1: Without loss of generality, we may assume b = 0 since obviously a translation will not a¤ect
curvature and torsion. We have

��0 (s) = A�0 (s) and ��00 (s) = A�00 (s)

and so

k2�� (s) = h��00 (s) ; ��00 (s)i = hA�00 (s) ; A�00 (s)i
=


�00 (s) ; ATA�00 (s)

�
= h�00 (s) ; �00 (s)i = k2� (s) ;

which gives k�� (s) = k� (s) : As for the torsion, by (40) we have

��� (s) = �
(��0 (s) ^ ��00 (s)) � ��000 (s)

jk�� (s)j2

where (note that detA = 1)

(��0 (s) ^ ��00 (s)) � ��000 (s) = (A�0 (s) ^ A�00 (s)) � A�000 (s)
= det (A�0 (s) ; A�00 (s) ; A�000 (s)) = (detA) (det (�0 (s) ; �00 (s) ; �000 (s)))

= det (�0 (s) ; �00 (s) ; �000 (s)) = (�0 (s) ^ �00 (s)) � �000 (s) ;

which gives ��� (s) = �� (s). �

Proof of the uniqueness part of Theorem 1.72:

Proof. Assume there are two curves � = � (s) ; �� = �� (s) satisfying the conditions

k� (s) = k�� (s) = k0 (s) > 0; �� (s) = ��� (s) = �0 (s) ; 8 s 2 I:

Let ft (s0) ; n (s0) ; b (s0)g and
�
�t (s0) ; �n (s0) ;�b (s0)

	
be the Frenet frames of � and �� respectively

at s = s0 2 I: There exists a rigid motion T : R3 ! R3 taking � (s0) to �� (s0) and taking
ft (s0) ; n (s0) ; b (s0)g to

�
�t (s0) ; �n (s0) ;�b (s0)

	
: Thus, after performing this rigid motion T on

�; we have (we still denote T (�) as � if no confusion occurs)

� (s0) = �� (s0) ; (t (s0) ; n (s0) ; b (s0)) =
�
�t (s0) ; �n (s0) ;�b (s0)

�
(54)

and the Frenet frames ft (s) ; n (s) ; b (s)g and
�
�t (s) ; �n (s) ;�b (s)

	
of � and �� satisfy the equation

(here we need to use the property from Lemma 1.75 that a rigid motion preserves curvature and
torsion) 0@ t0 (s)

n0 (s)
b0 (s)

1A =M (s)

0@ t (s)
n (s)
b (s)

1A and

0@ �t0 (s)
�n0 (s)
�b0 (s)

1A =M (s)

0@ �t (s)
�n (s)
�b (s)

1A ; (55)

where

M (s) =

0@ 0 k0 (s) 0
�k0 (s) 0 ��0 (s)
0 �0 (s) 0

1A ; MT (s) = �M (s) (anti-symmetric)
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and we have (54). In particular, we note that (here we use formal notation again)

1

2

d

ds

n
jt (s)� �t (s)j2 + jn (s)� �n (s)j2 +

��b (s)� �b (s)��2o
=

*0@ t (s)� �t (s)
n (s)� �n (s)
b (s)� �b (s)

1A ;
d

ds

0@ t (s)� �t (s)
n (s)� �n (s)
b (s)� �b (s)

1A+

=

*0@ t (s)� �t (s)
n (s)� �n (s)
b (s)� �b (s)

1A ; M (s)

0@ t (s)� �t (s)
n (s)� �n (s)
b (s)� �b (s)

1A+ = 0; 8 s 2 I; (56)

where the last identity is due to M (s) is anti-symmetric (see (38) in Lemma 1.61). Hence we
have

jt (s)� �t (s)j2 + jn (s)� �n (s)j2 +
��b (s)� �b (s)��2

� const. = 0 (due to (54)); 8 s 2 I;

i.e.
t (s) = �t (s) ; n (s) = �n (s) ; b (s) = �b (s) ; 8 s 2 I:

Since
�0 (s) = t (s) = �t (s) = ��0 (s) ; s 2 I

and � (s0) = �� (s0) ; by integration, we must have � (s) = �� (s) for all s 2 I. Thus the two curves
only di¤er by a rigid motion. �

1.5.6 Curvature and Torsion for Space Curves not Parametrized by Arc Length.

What happens if a regular curve � (t) : I ! R3 (or R2) is not parametrized by arc length parameter
s? Then one can always reparametrize it by arc length parameter s and obtain a new parametriza-
tion � (s) : With � (s) one can compute the curvature k (t) and torsion � (t) of � (t) at any point.
Thus we de�ne:

De�nition 1.77 The curvature k� (t) of � (t) at t0 is the curvature k� (s) of � (s) at s0; where � (s0) =
� (t0) : Also the torsion �� (t) of � (t) at t0 is the torsion �� (s) of � (s) at s0: That is: k� (t) =
k� (s (t)) ; �� (t) = �� (s (t)) :; where � (s (t)) = � (t) :

Remark 1.78 The above de�nition is independent of the choice of the reparametrization � (s) :

Let � (t) : I ! R3 be a regular curve in R3; not necessarily parametrized by are length.
Let � (s) be a reparametrization of � by arc parameter s = s (t) measured from t0 2 I: We require
� (s) to have the same orientation as � (t) :Therefore s (t) is a strictly increasing function of t and
vice versa. Then we have � (s) = � (t (s)) and

�0 (s) = �0 (t (s)) t0 (s) ; t0 (s) =
1

j�0 (t (s))j| {z }; s0 (t) = j�0 (t)j (57)

and
�00 (s) = �00 (t (s)) (t0 (s))

2
+ �0 (t (s)) t00 (s) ; (58)

where

t00 (s) =
�1
j�0 (t)j2

d

ds
(j�0 (t)j) = �1

j�0 (t)j2



�0 (t) ; d

ds
(�0 (t))

�
j�0 (t)j =

�1
j�0 (t)j2

h�0 (t) ; �00 (t) t0 (s)i
j�0 (t)j

=
�h�0 (t) ; �00 (t)i

j�0 (t)j4| {z }; t = t (s) (59)
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and so

�00 (s) =
�00 (t (s))

j�0 (t (s))j2
� h�

0 (t) ; �00 (t)i
j�0 (t)j4

�0 (t (s)) (60)

Hence the space curve k� (s) � 0 satis�es

k2� (s) = h�00 (s) ; �00 (s)i

=

�
�00 (t)

j�0 (t)j2
� h�

0 (t) ; �00 (t)i
j�0 (t)j4

�0 (t) ;
�00 (t)

j�0 (t)j2
� h�

0 (t) ; �00 (t)i
j�0 (t)j4

�0 (t)

�
=
j�00 (t)j2

j�0 (t)j4
� h�

0 (t) ; �00 (t)i2

j�0 (t)j6
=
j�0 (t)j2 j�00 (t)j2 � h�0 (t) ; �00 (t)i2

j�0 (t)j6

and by the identity jv ^ wj2 = jvj2 jwj2 � (v � w)2 ; we derive the curvature formula

0 � k� (t) = k� (s) =
j�0 (t) ^ �00 (t)j
j�0 (t)j3| {z } : (61)

Remark 1.79 In particular, if � (t) = (x (t) ; y (t) ; 0) : I ! R2 � R3 is a plane curve, then we
have

k� (t) =
j�0 (t) ^ �00 (t)j
j�0 (t)j3

=
jx0 (t) y00 (t)� y0 (t)x00 (t)j�
(x0 (t))2 + (y0 (t))2

�3=2 ; t 2 I: (62)

Compare with (82) below.

As for the torsion, we know that (see (40))

�� (s) = �
(�0 (s) ^ �00 (s)) � �000 (s)

j�00 (s)j2
= � (�0 (s) ^ �00 (s)) � �

000 (s)

k2� (s)
;

where by (57) and (58), we get

�0 (s) ^ �00 (s)

= [�0 (t) t0 (s)] ^
h
�00 (t) (t0 (s))

2
+ �0 (t) t00 (s)

i
=
�0 (t) ^ �00 (t)
j�0 (t)j3

and so

�� (s) = �
�0 (t) ^ �00 (t)
j�0 (t)j3

� �
000 (s)

k2� (s)
:

Now note that

�000 (s) =
d

ds

h
�00 (t) (t0 (s))

2
+ �0 (t) t00 (s)

i
=

�000 (t)

j�0 (t)j3
+ A�0 (t) +B�00 (t)

for some coe¢ cients A; B: Hence in terms of t; we get

� (t) = ��
0 (t) ^ �00 (t)
j�0 (t)j3

� 1

k2� (s)

�
�000 (t)

j�0 (t)j3
+ A�0 (t) +B�00 (t)

�
= �(�

0 (t) ^ �00 (t)) � �000 (t)
j�0 (t)j6 k2� (s)

; k� (s) =
j�0 (t) ^ �00 (t)j
j�0 (t)j3

> 0

= �(�
0 (t) ^ �00 (t)) � �000 (t)
j�0 (t) ^ �00 (t)j2| {z } (assume the denominator is not zero), (63)

which is the formula for the torsion in terms of t:
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1.5.7 The Convention of a Plane Curve; Signed Curvature.

Recall that if � : I ! R3 is a regular curve parametrized by arc length s, its curvature k (s) is
de�ned as k (s) = j�00 (s)j � 0: However, in the particular case of a plane regular curve � : I ! R2;
it is possible to give the curvature k (s) a sign (call it signed curvature). For this purpose, let
fe1; e2g = f(1; 0) ; (0; 1)g be the natural basis of R2 and de�ne the normal vector n (s) ; s 2 I; by
requiring the basis ft (s) ; n (s)g to have the same orientation as the basis fe1; e2g : Therefore, the
normal vector n (s) is always chosen as

t (s) = (x0 (s) ; y0 (s)) ; n (s) = (�y0 (s) ; x0 (s)) ; s 2 I (64)

This normal vector n (s) is uniquely de�ned everywhere along the curve � (s) even if
t0 (s) = �00 (s) = 0 somewhere (we can not achieve this if � (s) is a space curve). With this, the
curvature k (s) is then de�ned via the identity

t0 (s) = k (s)n (s) (same as k (s) = ht0 (s) ; n (s)i = h�00 (s) ; n (s)i ); t (s) = �0 (s) ; t0 (s) = �00 (s) ;
(65)

where now k (s) may be either positive or negative. It is clear that jk (s)j agrees with the
previously de�ned curvature k (s) for space curves: Also note that both k (s) and n (s)
change sign when we change the orientation of � (draw a picture to see this !!) or change
the orientation of R2:

Remark 1.80 Draw a picture ....

Remark 1.81 (Important.) From now on, for a plane curve �, its curvature k (s) always means
signed curvature unless otherwise stated. Also, when we say that ft (s) ; n (s)g is a Frenet frame
of a plane curve �; we always mean that it is under the above sense, i.e., det (t (s) ; n (s)) >
0 everywhere.

For a plane curve, one can express the unit vector t (s) as

t (s) = (cos � (s) ; sin � (s)) ; s 2 I: (66)

where � (s) is the angle from e1 to t (s) in the orientation of R2: Then, under the above convention,
we have

n (s) = (� sin � (s) ; cos � (s)) ; det (t (s) ; n (s)) > 0 (67)

and by the curvature de�nition identity t0 (s) = k (s)n (s) ; we have the formula for a plane curve:

k (s) =
d�

ds
(s) for all s 2 I: (68)

The Frenet frame equations for plane curves become the following

d

ds

�
t (s)
n (s)

�
=

�
0 k (s)
�k (s) 0

��
t (s)
n (s)

�
; k (s) = signed curvature, s 2 I: (69)

To see (69), we note that

0 =
d

ds
ht (s) ; n (s)i = ht0 (s) ; n (s)i+ ht (s) ; n0 (s)i = k (s) + ht (s) ; n0 (s)i

and since hn (s) ; n0 (s)i = 0; we must have n0 (s) = �k (s) t (s) :

Remark 1.82 (important) Note that (69) still holds if we use the previous de�nition of k (s) =
j�00 (s)j � 0:
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Lemma 1.83 Let � (s) : I ! R2 be a plane curve. Then

k (s) = ht0 (s) ; n (s)i = h�00 (s) ; n (s)i = det (�0 (s) ; �00 (s)) ; s 2 I: (70)

Thus the sign of k (s) informs us about the orientation of the basis formed by the velocity vector
�0 (s) and the acceleration vector �00 (s) of the curve.

Proof. The last identity is due to

det (�0 (s) ; �00 (s)) = det (t (s) ; k (s)n (s)) = k (s) det (t (s) ; n (s)) = k (s) :

�

Remark 1.84 (Comparison.) Let � (s) : I ! R2 be a regular curve given by � (s) = (x (s) ; y (s)) ; s 2
I: Its signed curvature ksign (s) 2 (�1;1) is given by

ksign (s) = det (�
0 (s) ; �00 (s)) = x0 (s) y00 (s)� y0 (s)x00 (s)| {z } (may be pos. or neg.); s 2 I: (71)

On the other hand, if we view � (s) as a space curve, its nonnegative curvature k (s) 2 [0;1) is
given by

k (s) = j�00 (s)j =
q
(x00 (s))2 + (y00 (s))2| {z }; s 2 I: (72)

One can check that (use the identities h�0 (s) ; �0 (s)i = 1 and h�0 (s) ; �00 (s)i = 0 for all s)

[x0 (s) y00 (s)� y0 (s)x00 (s)]2 = (x00 (s))2 + (y00 (s))2 ; 8 s 2 I: (73)

Therefore, we have

jx0 (s) y00 (s)� y0 (s)x00 (s)j = jksign (s)j = k (s) =

q
(x00 (s))2 + (y00 (s))2; 8 s 2 I: (74)

Example 1.85 Let � (s) : I ! R2 be a regular curve and lies on a a circle with radius r > 0: As
s in increasing, if � (s) goes in the counterclockwise direction, then k (s) = 1=r everywhere; if � (s)
goes in the clockwise direction, then k (s) = �1=r everywhere.

There is another version of the fundamental theorem for plane curves where now the curvature k0 (s)
is signed curvature. We �rst note the following:

Lemma 1.86 If two plane curves � (s) ; �� (s) ; s 2 I; are related by �� (s) = T (� (s)) for all s 2 I;
where T : R2 ! R2 is a rigid motion (it is orientation-preserving), then they have the same
signed curvature. That is

k� (s) = k�� (s) ; 8 s 2 I: (75)

Proof. Exercise. �

Theorem 1.87 (Fundamental theorem of plane curves.). Let k0 : I ! R be a di¤erentiable
function (not necessarily positive) de�ned on an open interval I � R: Then, there exists a plane
curve � : I ! R2; parametrized by arc length, such that

k� (s) = k0 (s) for all s 2 I

where k� (s) 2 (�1;1) is the signed curvature function of �: Moreover, if �� : I ! R2 is another
plane curve (also parametrized by arc length) with

k�� (s) = k0 (s) for all s 2 I

then there exists a rigid motion (see the de�nition in Remark 1.74) T : R2 ! R2 with detT =
1 such that �� = T � �:
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Remark 1.88 A rigid motion T : R2 ! R2 is either a rotation or a translation or a composition
of both.

Proof. Pick any three s0; s1; s2 2 I and de�ne

� (s) =

Z s

s0

k0 (u) du; � (s) =

�Z s

s1

cos � (u) du;

Z s

s2

sin � (u) du

�
; s 2 I:

� (s) : I ! R2 is clearly smooth with j�0 (s)j = 1 everywhere. Hence � (s) is parametrized by arc
length, with

�0 (s) = (cos � (s) ; sin � (s)) ; �00 (s) = �0 (s) (� sin � (s) ; cos � (s))

and so
k� (s) = det (�

0 (s) ; �00 (s)) = �0 (s) = k0 (s) for all s 2 I:
The claims the existence part.
To prove the uniqueness, suppose there are two plane curves � (s) ; �� (s) satisfying the condi-

tions
k�� (s) = k� (s) = k0 (s) ; 8 s 2 I:

Let ft0; n0g and f�t0; �n0g be the Frenet frames of � and �� respectively at s = s0 2 I: There exists
a rigid motion T : R2 ! R2 taking �� (s0) to � (s0) and f�t0; �n0g to ft0; n0g : Thus, after performing
this rigid motion on ��; we have �� (s0) = � (s0) and the Frenet frames ft (s) ; n (s)g and f�t (s) ; �n (s)g
of � and �� satisfy the equation (here we need to use the above lemma)�

t0 (s)
n0 (s)

�
=

�
k0 (s)n (s)
�k0 (s) t (s)

�
and

�
�t0 (s)
�n0 (s)

�
=

�
k0 (s) �n (s)
�k0 (s) �t (s)

�
with t (s0) = �t (s0) ; n (s0) = �n (s0) : In particular, we have (check it yourself)

1

2

d

ds

�
jt (s)� �t (s)j2 + jn (s)� �n (s)j2

�
= 0; 8 s 2 I (76)

and so t (s) = �t (s) ; n (s) = �n (s) for all s 2 I: Since

�0 (s) = t (s) = �t (s) = ��0 (s) ; s 2 I

we obtain � (s) = �� (s) for all s 2 I (note that � (s0) = �� (s0)). Thus the two curves only di¤er by
a rigid motion. �

Remark 1.89 (Important.) The above proof is constructive in the sense that a plane curve � (s)
parametrized by arc length length s 2 I whose signed curvature equal to a given function k (s) can
be found by solving the system of ODE:(

�0 (s) = k (s)

�0 (s) = (cos � (s) ; sin � (s))
; s 2 I (77)

and get � (s) : The solution � (s) is unique up to a rigid motion T : R2 ! R2:

Remark 1.90 (Important.) The above theorem fails if the curvature is not signed curvature but
given by k (s) = j�00 (s)j � 0: For example, consider the graph

y = f (x) ; x 2 (�1; 1) :
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The (nonnegative) curvature is given by (using Exercise 12 in p. 26 of the book)

k (x) =
jf 00 (x)j�

1 + (f 0 (x))2
�3=2 ; x 2 (�1; 1) :

Hence if we have y = x3; x 2 (�1; 1) ; then

k (x) =
6 jxj

[1 + 9x4]3=2
; x 2 (�1; 1) :

On the other hand, if we have

y =

(
x3; x 2 [0; 1)

�x3; x 2 (�1; 0)
(78)

then we have the same curvature k (x) for all x 2 (�1; 1). However, we cannot �nd a rigid motion
to carry a curve into another. One can also use this example to explain why we need
k > 0 everywhere in Theorem 1.72. Note: The curve given by (78) is not C1; but it does not
matter too much. One can �nd another example which is a C1 curve.

1.5.8 Some expressions for signed curvature k (s) of plane curves parametrized by arc
length.

Lemma 1.91 If a plane curve � (s) = (x (s) ; y (s)) is parametrized by arc length parameter s 2 I;
then we know that

k (s) = x0 (s) y00 (s)� x00 (s) y0 (s) (79)

and
k2 (s) = (x00 (s))

2
+ (y00 (s))

2
= � [x0 (s)x000 (s) + y0 (s) y000 (s)] : (80)

Moreover, we also have
k3 (s) = x00 (s) y000 (s)� x000 (s) y00 (s) : (81)

Proof. By dt=ds = kn; dn=ds = �kt; we have (note that t = (x0 (s) ; y0 (s)) ; n = (�y0 (s) ; x0 (s)))

(x000 (s) ; y000 (s)) =
d

ds
(x00 (s) ; y00 (s)) =

d

ds
(k (s)n (s)) = ks (s)n (s)� k2 (s) t (s)

and noting that the vector (�y00 (s) ; x00 (s)) = dn=ds = �kt is tangential, we obtain

h(x000 (s) ; y000 (s)) ; (�y00 (s) ; x00 (s))i =


ks (s)n (s)� k2 (s) t (s) ; �kt

�
= k3 (s) :

The proof is done. �

Remark 1.92 One can also use the following more straightforward method:

k3 (s) = k2 (s) � k (s) = � [x0 (s)x000 (s) + y0 (s) y000 (s)] [x0 (s) y00 (s)� x00 (s) y0 (s)]

=

8<:
� (x0 (s))2 x000 (s) y00 (s) + x0 (s)x00 (s) � y0 (s)x000 (s)

� y0 (s) y00 (s) � x0 (s) y000 (s)| {z }+(y0 (s))2 x00 (s) y000 (s)
and by

x0 (s)x00 (s) + y0 (s) y00 (s) = 0; (x0 (s))
2
+ (y0 (s))

2
= 1
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we get

k3 (s) =

8<:
� (x0 (s))2 x000 (s) y00 (s)� (y0 (s))2 y00 (s)x000 (s)

+ (x0 (s))
2
x00 (s) y000 (s)| {z }+(y0 (s))2 x00 (s) y000 (s)

= �
h
(x0 (s))

2
+ (y0 (s))

2
i
x000 (s) y00 (s) +

h
(x0 (s))

2
+ (y0 (s))

2
i
x00 (s) y000 (s)

= x00 (s) y000 (s)� x000 (s) y00 (s) :

The proof is done.

Remark 1.93 (elegant) There is an elegant method. We know

(x00 (s) ; y00 (s)) = k (s) (�y0 (s) ; x0 (s)) (due to �00 (s) = k (s)n (s) ):

Hence x00 (s) = �k (s) y0 (s) ; y00 (s) = k (s)x0 (s) and then

x00 (s) y000 (s)� x000 (s) y00 (s) = �k (s) [y0 (s) y000 (s) + x0 (s)x000 (s)] = k3 (s) :

1.5.9 Signed Curvature for Plane Curves not Parametrized by Arc Length.

For regular plane curve � (t) = (x (t) ; y (t)) 2 R2 not parametrized by arc length, its signed
curvature k (t) is given by (this is almost obvious from (62))

k (t) =
x0 (t) y00 (t)� y0 (t)x00 (t)�
(x0 (t))2 + (y0 (t))2

�3=2 : (82)

To see this, �rst note that � (s) = � (t (s)) and

�0 (s) =
�0 (t)

j�0 (t)j =

0@ x0q
(x0)2 + (y0)2

;
y0q

(x0)2 + (y0)2

1A = (cos � (s) ; sin � (s))

due to (66). Next we recall that (see (60))

�00 (s) =
d�

ds|{z} (� sin � (s) ; cos � (s)) ; k (s) =
d�

ds

=
�00 (t)

j�0 (t)j2
� h�

0 (t) ; �00 (t)i
j�0 (t)j4

�0 (t)

=

�
x00

(x0)2 + (y0)2
;

y00

(x0)2 + (y0)2

�
� x0x00 + y0y00�

(x0)2 + (y0)2
�2 (x0; y0)

=
x0y00 � y0x00�
(x0)2 + (y0)2

�3=2| {z }
0@ �y0q

(x0)2 + (y0)2
;

x0q
(x0)2 + (y0)2

1A = k (t)|{z} (� sin � (s) ; cos � (s)) ;
which veri�es (82).

Remark 1.94 Another quick proof of (82) is: By k = d�=ds; we have

k (t) =
d

ds

�
tan�1

y0 (t)

x0 (t)

�
=

1

j�0 (t)j
d

dt

�
tan�1

y0 (t)

x0 (t)

�
(assume x0 (t) 6= 0)

=
1

j�0 (t)j
1

1 +
�
y0(t)
x0(t)

�2 x0 (t) y00 (t)� y0 (t)x00 (t)(x0 (t))2
=
x0 (t) y00 (t)� y0 (t)x00 (t)�
(x0 (t))2 + (y0 (t))2

�3=2 :
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In case x0 (t) 6= 0; then we have y0 (t) 6= 0 and can use the identity

k (t) =
d

ds

�
cot�1

x0 (t)

y0 (t)

�
=
x0 (t) y00 (t)� y0 (t)x00 (t)�
(x0 (t))2 + (y0 (t))2

�3=2 :
Remark 1.95 (Be careful.) By (82), a regular plane curve � (t) = (x (t) ; y (t)) parametrized by
an arbitrary parameter t satis�es

k (t0) = 0 if and only if x0 (t0) y00 (t0)� y0 (t0)x00 (t0) = 0 (i.e., �00 (t0) has no normal component).

Be careful that k (t0) = 0 is not equivalent to �00 (t0) = 0: On the other hand, if a regular plane
curve � (s) = (x (s) ; y (s)) is parametrized by arc length parameter s; then

k (s0) = 0 if and only if �00 (s0) = (x00 (s0) ; y00 (s0)) = (0; 0) ;

where we note that �00 (s) is always pointing in the normal direction (due to h�00 (s) ; �0 (s)i = 0 for
all s).

Example 1.96 Consider the curve � (t) = (t3; t3) ; t 2 (1;1) : Its trace is a half-line in R2 and
has k (t) � 0 for all t 2 (1;1) ; but �00 (t) = (6t; 6t) 6= 0 for all t 2 (1;1) :

Example 1.97 Consider the graphic curve � (x) = (x; f (x)) ; x 2 I; then k (x0) = 0 if and only if
f 00 (x0) = 0 if and only if �00 (x0) = (0; 0) :

1.5.10 Signed Curvature for Plane Curves Parametrized by Polar Coordinates.

Let (r; �) be the polar coordinates in R2; where r 2 (0;1) and � 2 (a; b) (some open interval). Let
� (�) : (a; b)! R2 be a regular plane curve parametrized by

� (�) = (x (�) ; y (�)) = (r (�) cos �; r (�) sin �) ; � 2 (a; b) ;

where now r (�) > 0 is some positive di¤erentiable function depending on �: Its arc length L over
� 2 (a; b) is given by

L =

Z b

a

j�0 (�)j d�;

where by

�0 (�) = (x0 (�) ; y0 (�)) = r0 (�) (cos �; sin �) + r (�) (� sin �; cos �)
:= r0 (�)V (�) + r (�)W (�)| {z }; V (�) �W (�) = 0; V 0 (�) =W (�) ; W 0 (�) = �V (�) ;

we have

L =

Z b

a

j�0 (�)j d� =
Z b

a

q
(r (�))2 + (r0 (�))2d�: (83)

For its signed curvature, we compute

�00 (�) = (x00 (�) ; y00 (�)) = r00 (�)V (�) + r0 (�) [V 0 (�) +W (�)] + r (�)W 0 (�)

= (r00 (�)� r (�))V (�) + 2r0 (�)W (�)| {z }
and note that

x0 (�) y00 (�)� x00 (�) y0 (�)

= det

�
x0 (�) x00 (�)
y0 (�) y00 (�)

�
= det (�0 (�) ; �00 (�)) (both �0 (�) and �00 (�) are column vectors)
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In the following we view V (�) = (cos �; sin �) and W (�) = (� sin �; cos �) as column vector and by

det (V (�) ;W (�))) = 1; det (V (�) ;W 0 (�)) = det (V 0 (�) ;W (�)) = 0; det (W (�) ;W 0 (�)) = �1

we have

det (�0 (�) ; �00 (�)) = det

�
r0 (�)V (�) + r (�)W (�)| {z }; (r00 (�)� r (�))V (�) + 2r0 (�)W (�)| {z }

�
= 2 (r0 (�))

2 � r (�) (r00 (�)� r (�)) :

Therefore, the signed curvature k (�) is given by

k (�) =
x0 (�) y00 (�)� y0 (�)x00 (�)�
(x0 (�))2 + (y0 (�))2

�3=2 =
r2 (�) + 2 (r0 (�))2 � r (�) r00 (�)�

r2 (�) + (r0 (�))2
�3=2 ; � 2 (a; b) : (84)

1.5.11 Signed Curvature of Level Curves in R2:

Let � (s) = (x (s) ; y (s)) : I ! R2 be a regular plane curve and assume that it is a level curve
C of a smooth function 	(x; y) : R2 ! R given by 	(x; y) = 0; i.e. we have

	(� (s)) = 	 (x (s) ; y (s)) = 0; 8 s 2 I: (85)

One can use the function 	 to express the curvature of �:
Di¤erentiate with respect to s to get (in the following, all partial derivatives of 	 are evaluated

at � (s))
@	

@x
_x (s) +

@	

@y
_y (s) = hr	; ( _x (s) ; _y (s))i = hr	; t (s)i = 0; 8 s 2 I (86)

and also�
@	

@x
�x (s) +

@	

@y
�y (s)

�
+

�
@2	

@x2
_x (s) +

@2	

@x@y
_y (s)

�
_x (s)+

�
@2	

@x@y
_x (s) +

@2	

@2y
_y (s)

�
_y (s) = 0; s 2 I

which is same as�
@	

@x
�x (s) +

@	

@y
�y (s)

�
+
@2	

@x2
_x2 (s) + 2

@2	

@x@y
_x (s) _y (s) +

@2	

@2y
_y2 (s)| {z } = 0; s 2 I (87)

or in inner product and matrix multiplication form:

h(�x (s) ; �y (s)) ; r	i+
��

_x (s)
_y (s)

�
; H (s)

�
_x (s)
_y (s)

��
| {z } = 0; s 2 I (88)

where

H (s) =

0@ @2	
@x2

(x (s) ; y (s)) @2	
@x@y

(x (s) ; y (s))

@2	
@x@y

(x (s) ; y (s)) @2	
@2y
(x (s) ; y (s))

1A ; s 2 I (89)

is the 2� 2 Hessian matrix of 	 evaluated at (x (s) ; y (s)) :
Let t (s) = ( _x (s) ; _y (s)) be the unit tangent vector to � at s (as usual, we assume that as s is

increasing, the curve goes along the counterclockwise direction): The unit normal vector to C at
s is given by n (s) = (� _y (s) ; _x (s)) : By (86) we know that r	(x (s) ; y (s)) is perpendicular to
t (s) everywhere and without loss of generality (replace the equation 	(x; y) = 0 by �	(x; y) = 0 if
necessary), we may assume that

n (s) = (� _y (s) ; _x (s)) = � r	(� (s))jr	(� (s))j =
�1

jr	((� (s)))j

�
@	

@x
(� (s)) ;

@	

@y
(� (s))

�
(90)

so that ft (s) ; �r	= jr	jg has positive orientation.
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Remark 1.98 The above assumption means that if C is oriented in the counterclockwise direction
and is a simple closed curve, then r	 is pointing outside �:

By de�nition, the signed curvature of � is given by

k (s) = ht0 (s) ; n (s)i

=

�
(�x (s) ; �y (s)) ; � r	(� (s))jr	(� (s))j

�
=

1

jr	(� (s))j h(�x (s) ; �y (s)) ; �r	(� (s))i

and by (87) we obtain

k (s) =
1

jr	(� (s))j

0@@2	
@x2

_x2 (s) + 2
@2	

@x@y
_x (s) _y (s) +

@2	

@2y
_y2 (s)| {z }

1A : (91)

Now by (90) we can write (91) as

k (s) =
1

jr	(� (s))j3

(
@2	

@x2

�
@	

@y

�2
� 2 @

2	

@x@y

@	

@x

@	

@y
+
@2	

@2y

�
@	

@x

�2)
(92)

where @	
@x
= @	

@x
(� (s)) ; @2	

@x2
= @2	

@x2
(� (s)) ; etc.

We conclude the following:

Lemma 1.99 Assume C is a regular plane curve given by the equation

	(x; y) = 0 (93)

then at p = (x0; y0) 2 C; its signed curvature k (p) is given by

k (p) =
1

jr	(p)j3

(�
@	

@y
(p)

�2
@2	

@x2
(p)� 2@	

@x
(p)

@	

@y
(p)

@2	

@x@y
(p) +

�
@	

@x
(p)

�2
@2	

@2y
(p)

)
: (94)

Remark 1.100 (Important.) Note that formula (94) is independent of the parametrization of
C = (x (s) ; y (s)) ; s 2 I: Also the signed curvature is given by the elegant formula:

k (p)

= div

�
r	
jr	j

�
(p) (the divergence of the normalized gradient vector �eld

r	
jr	j)

=
@

@x

�
1

jr	j
@	

@x

�
(p) +

@

@y

�
1

jr	j
@	

@y

�
(p) : (95)

You can check it by yourself.

Example 1.101 As an trivial example, we take 	(x; y) = x2 + y2 � 1: Then C is the unit circle
centered at (0; 0) and if we parametrize it in the counterclockwise direction, then the identity
(90) holds and the signed curvature k is given by (94). We have

k (p) =
1�q

(2x)2 + (2y)2
�3 �2 (2y)2 + 2 (2x)2	 = 1; 8 p 2 C: (96)
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Example 1.102 In the special case when 	(x; y) = f (x)�y; then if we assume the curve is moving
in the direction of increasing x; the identity (90) holds. At the point p = (x0; y0) = (x0; f (x0)) 2 C;
(94) can be used and we obtain

k (p) =
1

jr	(p)j3

(
@2	

@x2
(p)

�
@	

@y
(p)

�2)
=

f 00 (x0)�
1 + (f 0 (x0))

2�3=2 (97)

which coincides with the traditional formula.

Example 1.103 Consider the ellipse C given by the equation

	(x; y) =
x2

a2
+
y2

b2
� 1 = 0;

where a; b are positive constants. One can parametrize the curve C as

� (t) = (x (t) ; y (t)) = (a cos t; b sin t) ; t 2 [0; 2�] :

As t is increasing, C is going in the counterclockwise direction and the signed curvature k (t) of
� (t) can be computed by

k (t) =
x0 (t) y00 (t)� y0 (t)x00 (t)�
(x0 (t))2 + (y0 (t))2

�3=2 = ab�
a2 sin2 t+ b2 cos2 t

�3=2 > 0; t 2 [0; 2�] : (98)

On the other hand, since the identity (90) holds, one can also use the formula (94) to get

k (p)

=
1

jr	(p)j3

(�
@	

@y
(p)

�2
@2	

@x2
(p)� 2@	

@x
(p)

@	

@y
(p)

@2	

@x@y
(p) +

�
@	

@x
(p)

�2
@2	

@2y
(p)

)

=
1��

2x
a2

�2
+
�
2y
b2

�2�3=2
(�

2y

b2

�2
2

a2
+

�
2x

a2

�2
2

b2

)
=

1�
x2

a4
+ y2

b4

�3=2 1

a2b2

 
x2

a2
+
y2

b2| {z }
!

=
1�

x2

a4
+ y2

b4

�3=2 ab

(a2b2)3=2
=

ab�
b2

a2
x2 + a2

b2
y2
�3=2 ; p = (x; y) 2 C (99)

We see that both (98) and (99) are the same.

Exercise 1.104 Do exercise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13, 14 in p. 23 (some problems
are quite straightforward).

Example 1.105 (Mapping a plane curve to a space curve by z = f (x; y).) (Put this as a
homework problem ...) Let � (t) = (x (t) ; y (t)) ; t 2 (a; b) ; be a plane curve and z = f (x; y) is
a smooth graph with domain U � R2 containing the image of � (t). Hence � (t) is mapped into a
space curve � (t) = (x (t) ; y (t) ; z (t)) ; where z (t) = f (x (t) ; y (t)). We want to �nd the relation
between the signed curvature k� (t) 2 (�1;1) of � (t) and the curvature k� (t) 2 [0;1) of
� (t) : We have

k� (t) =
x0 (t) y00 (t)� y0 (t)x00 (t)�
(x0 (t))2 + (y0 (t))2

�3=2
and

k� (t) =
j�0 (t) ^ �00 (t)j
j�0 (t)j3

; � (t) = (x (t) ; y (t) ; f (x (t) ; y (t))) ;
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where

�0 (t) = x0 (t)

0@ 1
0
fx

1A+ y0 (t)

0@ 0
1
fy

1A =

0@ x0 (t)
y0 (t)

x0 (t) fx + y0 (t) fy

1A (100)

with fx = fx (x (t) ; y (t)) ; fy = fy (x (t) ; y (t)) ; and then

j�0 (t)j3 = h�0 (t) ; �0 (t)i3=2 =
h
(x0 (t))

2 �
1 + f 2x

�
+ 2x0 (t) y0 (t) fxfy + (y

0 (t))
2 �
1 + f 2y

�i3=2
(101)

We also have

�00 (t)

= x00 (t)

0@ 1
0
fx

1A+ y00 (t)

0@ 0
1
fy

1A+ x0 (t)

0@ 0
0

x0 (t) fxx + y0 (t) fxy

1A+ y0 (t)

0@ 0
0

x0 (t) fyx + y0 (t) fyy

1A
Hence

�0 (t) ^ �00 (t) = I + II; (102)

where

I = x0 (t) y00 (t)

0@ �fx�fy
1

1A+(x0 (t))2
0@ 0
�x0 (t) fxx � y0 (t) fxy

0

1A+x0 (t) y0 (t)
0@ 0
�x0 (t) fyx � y0 (t) fyy

0

1A
and

II = y0 (t)x00 (t)

0@ fx
fy
�1

1A+y0 (t)x0 (t)
0@ x0 (t) fxx + y0 (t) fxy

0
0

1A+(y0 (t))2
0@ x0 (t) fyx + y0 (t) fyy

0
0

1A ;

where fx = fx (x (t) ; y (t)) ; etc. Thus

�0 (t) ^ �00 (t) = [x0 (t) y00 (t)� y0 (t)x00 (t)]

0@ �fx�fy
1

1A+M (t)

0@ y0 (t)
�x0 (t)
0

1A ; (103)

where (�fx;�fy; 1) is normal (pointing upward) to the graph z = f (x; y) at (x (t) ; y (t) ; f (x (t) ; y (t)))
and (y0 (t) ;�x0 (t) ; 0) is normal to the plane curve � at � (t) ; and M (t) comes from the Hessian
Hf (x; y) of the function f (x; y) ; given by

M (t) = (x0 (t))
2
fxx + 2x

0 (t) y0 (t) fxy + (y
0 (t))

2
fyy =

��
x0 (t)
y0 (t)

�
;

�
fxx fxy
fyx fyy

��
x0 (t)
y0 (t)

��
:

We conclude

j�0 (t) ^ �00 (t)j2

=

(
[x0 (t) y00 (t)� y0 (t)x00 (t)]2

�
1 + f 2x + f 2y

�
+2M (t) [x0 (t) y00 (t)� y0 (t)x00 (t)] [x0 (t) fy � y0 (t) fx] +M2 (t)

�
(x0 (t))2 + (y0 (t))2

�
;
(104)

and get the �nal identity:

k2� (t) =
j�0 (t) ^ �00 (t)j2

j�0 (t)j6

=

(
[x0 (t) y00 (t)� y0 (t)x00 (t)]2

�
1 + f 2x + f 2y

�
+2M (t) [x0 (t) y00 (t)� y0 (t)x00 (t)] [x0 (t) fy � y0 (t) fx] +M2 (t)

�
(x0 (t))2 + (y0 (t))2

�
)

�
(x0 (t))2 (1 + f 2x) + 2x

0 (t) y0 (t) fxfy + (y0 (t))
2 �1 + f 2y ��3 :

(105)
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In case � (t) is parametrized by arc length, i.e., t = s; we have

j�0 (s) ^ �00 (s)j2 = k2� (s)
�
1 + f 2x + f 2y

�
+ 2k� (s)M (s) [x0 (s) fy � y0 (s) fx] +M2 (s)| {z };

where fx = fx (x (s) ; y (s)) ; fxx = fxx (x (s) ; y (s)) ; ..., etc, and then

k2� (s) =
k2� (s)

�
1 + f 2x + f 2y

�
+ 2k� (s)M (s) [x0 (s) fy � y0 (s) fx] +M2 (s)�
1 + [x0 (s) fx + y0 (s) fy]

2�3| {z } (106)

with
M (s) = (x0 (s))

2
fxx + 2x

0 (s) y0 (s) fxy + (y
0 (s))

2
fyy: (107)

At the point (x (s) ; y (s)) with

fx (x (s) ; y (s)) = fy (x (s) ; y (s)) = 0; (108)

the above is reduced to
k2� (s) = k2� (s) +M2| {z } : (109)

Another case is when � (s) is a line in R2 with (x0 (s) ; y0 (s)) = (a; b) ; a unit vector, then k� (s) �
0 and we get

k2� (s) =
(a2fxx + 2abfxy + b2fyy)

2�
1 + (afx + bfy)

2�3 : (110)

Example 1.106 (Mapping a plane curve to another plane curve by F (x; y) :) (Put this
as a homework problem ...) Let � (s) = (x (s) ; y (s)) ; s 2 (a; b) ; be a plane curve parametrized
by arc length parameter s and let

F (x; y) = (f (x; y) ; g (x; y)) : R2 ! R2

be a smooth map and � (s) = F (x (s) ; y (s)) : We want to �nd the relation between the signed
curvature of � (s) and the signed curvature of � (s) We have

k� (s) = x0 (s) y00 (s)� y0 (s)x00 (s)

and by � (s) = (f (x (s) ; y (s)) ; g (x (s) ; y (s))) (denote it as (p (s) ; q (s))), we have

k� (s) =
p0 (s) q00 (s)� q0 (s) p00 (s)�
(p0 (s))2 + (q0 (s))2

�3=2 =
1�

(p0 (s))2 + (q0 (s))2
�3=2 det� p0 (s) p00 (s)

q0 (s) q00 (s)

�
: (111)

Note that �
p0 (s)
q0 (s)

�
=

�
x0 (s) fx + y0 (s) fy
x0 (s) gx + y0 (s) gy

�
=

�
ht (s) ;rfi
ht (s) ;rgi

�
;

with

(p0 (s))
2
+ (q0 (s))

2

= ht (s) ;rfi2 + ht (s) ;rgi2 = [x0 (s) fx + y0 (s) fy]
2
+ [x0 (s) gx + y0 (s) gy]

2

= (x0 (s))
2 �
f 2x + g2x

�
+ 2x0 (s) y0 (s) [fxfy + gxgy] + (y

0 (s))
2 �
f 2y + g2y

�
;

where t (s) = (x0 (s) ; y0 (s)) and rf; rg are both evaluated at (x (s) ; y (s)). Also by�
p00 (s)
q00 (s)

�
=

�
hk� (s)n (s) ; rfi+



t (s) ; d

ds
rf
�

hk� (s)n (s) ; rgi+


t (s) ; d

ds
rg
� � ; t0 (s) = k� (s)n (s) ; n (s) = (�y0 (s) ; x0 (s))
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and (denote the 2� 2 Hessian matrix of f at (x (s) ; y (s)) as Hf (x (s) ; y (s)))�
t (s) ;

d

ds
rf
�

=

��
x0 (s)
y0 (s)

�
; Hf (x (s) ; y (s))

�
x0 (s)
y0 (s)

��
:=Mf (x (s) ; y (s))

and �
t (s) ;

d

ds
rg
�
=

��
x0 (s)
y0 (s)

�
; Hg (x (s) ; y (s))

�
x0 (s)
y0 (s)

��
:=Mg (x (s) ; y (s)) ;

we obtain �
p00 (s)
q00 (s)

�
=

�
hk� (s)n (s) ;rfi+Mf (x (s) ; y (s))
hk� (s)n (s) ;rgi+Mg (x (s) ; y (s))

�
and then

det

�
p0 (s) p00 (s)
q0 (s) q00 (s)

�
= det

�
ht (s) ;rfi hk� (s)n (s) ;rfi+Mf (x (s) ; y (s))
ht (s) ;rgi hk� (s)n (s) ;rgi+Mg (x (s) ; y (s))

�
= ht (s) ;rfi [hk� (s)n (s) ;rgi+Mg]� ht (s) ;rgi [hk� (s)n (s) ;rfi+Mf ]

= k� (s) [ht (s) ;rfi hn (s) ;rgi � ht (s) ;rgi hn (s) ;rfi]| {z }+ ht (s) ; Mgrf �Mfrgi : (112)

We can simplify the �rst term in (112) as

ht (s) ;rfi hn (s) ;rgi � ht (s) ;rgi hn (s) ;rfi| {z }
= [x0 (s) fx + y0 (s) fy] [�y0 (s) gx + x0 (s) gy]� [x0 (s) gx + y0 (s) gy] [�y0 (s) fx + x0 (s) fy]

=

(
x0 (s) fx [�y0 (s) gx + x0 (s) gy] + y0 (s) fy [�y0 (s) gx + x0 (s) gy]

�x0 (s) gx [�y0 (s) fx + x0 (s) fy]� y0 (s) gy [�y0 (s) fx + x0 (s) fy]

=
�
(x0 (s))

2
+ (y0 (s))

2
�
(fxgy � fygx) = fxgy � fygx

and conclude

det

�
p0 (s) p00 (s)
q0 (s) q00 (s)

�
= k� (s) (fxgy � fygx) + ht (s) ; Mgrf �Mfrgi : (113)

The �nal result is

k� (s) =
k� (s) (fxgy � fygx) + ht (s) ; Mgrf �Mfrgi�

ht (s) ;rfi2 + ht (s) ;rgi2
�3=2 ; s 2 (a; b) : (114)

End of the Curve Part on 2023/19/26

Move to Surface Part on 2023/10/3

2 Chapter 2: Regular Surfaces.

Remark 2.1 You may have to read the Appendix of this chapter in p.120 �rst, if you have forgotten
some stu¤ in Advanced Calculus.
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2.1 Introduction.

Read textbook p. 53 by yourself.

2.2 Regular Surfaces; Inverse Images of Regular Values (this is Section
2.2 of the textbook).

Unlike the case of regular curves, regular surfaces are de�ned as sets in R3 rather than maps
(we pay more attention to the shapes of surfaces in R3 than curves !!!). However, to study their
geometric properties, we still need to parametrize them (at least locally) and use parametrization
x (u; v) to carry out computations for mean curvature and Gauss curvature. More precisely,
we use parametrization x (u; v) to perform CALCULUS on the surface.
In this chapter, any subset S � R3 has the structure of a topological space. Its topology is

induced from R3 and we call it subspace topology. A subset A � S is called an open set in S if
there is an open set V in R3 such that A = V

T
S: However, one should be more careful for metric

structure on S (in particular when S is a regular surface): For any two points p; q 2 S; one can
talk about their Euclidean distance jp� qj in R3: On the other hand, one can also talk about
their distance along the surface S: We shall discuss this in the future.
Roughly speaking, a regular surface in R3 is obtained by taking pieces of a plane, deforming

them, and arranging them in such a way that there are no sharp points, edges, or self-intersections
and so that it makes sense to speak of a tangent plane at every point of it.
Our goal is to do calculus on a two-dimensional regular surface and this is exactly

similar to what we have done on curves.

De�nition 2.2 A subset S � R3 is called a regular surface if for each p 2 S there exists a
neighborhood (i.e., open set) V in R3 and a map x : U ! V

T
S; where U is an open set in R2; such

that

1. x is di¤erentiable, i.e., if we write

x (u; v) = (x (u; v) ; y (u; v) ; z (u; v)) ; (u; v) 2 U;

then the functions x (u; v) ; y (u; v) and z (u; v) have continuous partial derivatives of all orders
in U:

2. x : U ! V
T
S is a homeomorphism. That is, x : U ! V

T
S is continuous (by 1:; this is

automatically true) and the inverse x�1 : V
T
S ! U is also continuous. Note: any subset

M � R3 is itself a topological space with subspace topology induced from the topology
of R3. Therefore, x : U ! V

T
S is a homeomorphism between two topological spaces. Also

see Remark 2.5 and 2.6 below.

3. For each q 2 U; the di¤erential dxq : R2 ! R3 is one-one (some textbook uses the terminology
"nonsingular") (same as ker (dxq) = f0g or rank (dxq) = 2).

Remark 2.3 Give the "�gure 8" example in R2 to explain that it does not satisfy condition 2 in
the above de�nition. Use both topology and sequence methods to explain it :::

Remark 2.4 The map x : U ! V
T
S is called a (local) parametrization or a system of local

coordinates in (a neighborhood of) p: The set V
T
S � S is called a coordinate neighborhood

of p on S:
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Remark 2.5 If the map x�1 : V
T
S ! U (it is one-one and onto) is the restriction of a contin-

uous map F : V � R3 ! R2; then x�1 : V
T
S ! U is continuous. This is because for any open

set N � U we have �
x�1
��1

(N) = x (N) = F�1 (N)
\

S

and F�1 (N) is open in V and it is also open in R3 since V is open in R3:

Remark 2.6 The map x�1 : V
T
S ! U is continuous is equivalent to the fact that for each

p 2 V
T
S and each sequence pn 2 V

T
S with pn ! p in V

T
S (this means the Euclidean distance

jpn � pj in R3 converges to 0 as n!1); we have

lim
n!1

x�1 (pn) = x
�1 (p) : (115)

In Topology, there is a theorem which says the following: Let f : X ! Y be a map (both X and
Y are topological spaces). If f is a continuous map, then for every convergent sequence xn ! x in
X; the sequence f (xn) converge to f (x) in Y: The converse holds if X is metrizable.

Remark 2.7 (Important.) Condition 1 is natural if we want to do di¤erential calculus on the
surface S: Condition 2 is more subtle, which will be explained more later on. At this moment, we
can see that a regular surface cannot have self-intersections (why? explain this using curve and
sequence argument). Condition 3 guarantees the existence of a tangent plane (we will give a precise
de�nition of it) at every point of S: This is similar to the condition that a regular curve � (t) in
R2 has nonzero tangent vectors everywhere (hence the existence of tangent lines everywhere), i.e.,
�0 (t) has rank 1 for all t in the domain of �:

Remark 2.8 The di¤erential dxq : R2 ! R3 is one-one (equivalent to ker dxq = f0g) implies that
its Jacobi matrix (with respect to the standard bases of R2 and R3) J; given by

J =

0BBBB@
@x
@u

@x
@v

@y
@u

@y
@v

@z
@u

@z
@v

1CCCCA
has rank 2 (this is due to the Rank Theorem in linear algebra). This means that the two column
vectors are linearly independent or there exists a 2� 2 submatrix M of J with detM 6= 0: These
two vectors can span a plane passing through the point x (q) :

Let q = (u0; v0) 2 U � R2: The vector e1 = (1; 0) is tangent to the curve u! (u; v0) in R2 whose
image under x (u; v) is the curve u! (x (u; v0) ; y (u; v0) ; z (u; v0)) in R3:We call it the coordinate
curve v = v0 on the regular surface S: Its tangent vector at x (q) in R3 is

@x

@u
(q) =

@x

@u
(u0; v0) =

�
@x

@u
(u0; v0) ;

@y

@u
(u0; v0) ;

@z

@u
(u0; v0)

�
:

Similarly, the coordinate curve u = u0 on the regular surface S has a tangent vector at x (q) in
R3 given by

@x

@v
(q) =

@x

@v
(u0; v0) =

�
@x

@v
(u0; v0) ;

@y

@v
(u0; v0) ;

@z

@v
(u0; v0)

�
:

By the de�nition of di¤erential, we know that

dxq (e1) =
@x

@u
(q) =

�
@x

@u
(q) ;

@y

@u
(q) ;

@z

@u
(q)

�
; e1 = (1; 0) :

33



and

dxq (e2) =
@x

@v
(q) =

�
@x

@v
(q) ;

@y

@v
(q) ;

@z

@v
(q)

�
; e2 = (0; 1) :

Now the matrix of the linear map dxq with respect to the standard bases in R2 and R3 respectively
is given by

dxq =

0BB@
@x
@u
(q) @x

@v
(q)

@y
@u
(q) @y

@v
(q)

@z
@u
(q) @z

@v
(q)

1CCA :

Since dxq : R2 ! R3 has rank 2 at q = (u0; v0), the image of the linear map dxq : R2 ! R3 is a
two-dimensional plane P in R3 passing through the point p := x (u0; v0) 2 S (we will de�ne P as
the tangent plane of S at p and discuss it more later on). Note that at least one of the following

@ (x; y)

@ (u; v)
=

�����
@x
@u

@x
@v

@y
@u

@y
@v

����� ; @ (y; z)

@ (u; v)
=

�����
@y
@u

@y
@v

@z
@u

@z
@v

����� ; @ (x; z)

@ (u; v)
=

�����
@x
@u

@x
@v

@z
@u

@z
@v

����� (116)

is not zero at q:

Example 2.9 Show that the unit sphere

S2 =
�
(x; y; z) 2 R3 : x2 + y2 + z2 = 1

	
is a regular surface in R3: Follow the book�s explanation in p. 57, 58, 59.

We �rst observe the following:

Proposition 2.10 Let
S =

�
(x; y; f (x; y)) : (x; y) 2 U � R2

	
be the graph of a di¤erentiable function f (x; y) de�ned on some open set U of R2 (U = R2 is
allowed). Then it is a regular surface in R3:

Proof. De�ne the parametrization x (u; v) : U ! R3 as

x (u; v) = (u; v; f (u; v)) ; (u; v) 2 U:

Then follow the proof as in the book p. 60. To show that the map x�1 : S ! R2 is continuous, one
can use the projection argument in Remark 2.5 or use the sequence argument in Remark 2.6. �

Lemma 2.11 If S � R3 is a regular surface and S1 � S is any open subset of S; then S1 � R3 is
itself a regular surface in R3. In particular, if x : U ! V

T
S is a parametrization, then V

T
S

is itself a regular surface in R3.

Remark 2.12 S1 � S is an open subset of S means that there exists an open set V in R3 such
that S1 = V

T
S:

Proof. Exercise. �

Lemma 2.13 Assume S � R3 satis�es S =
S
i2J Si for some index set J; where each Si is a regular

surface in R3 and each Si is an open subset of S: Then S � R3 is a regular surface.

Remark 2.14 The condition that each Si is an open subset of S is essential. Give a counter
example with two regular surfaces S1; S2 touching at a point p 2 S1

T
S2.
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Proof. Exercise. �

Lemma 2.15 Let O1 and O2 be two open set in R3 and ' : O1 ! O2 is a di¤eomorphism. If
S1 � O1 is a regular surface, then S2 = ' (S1) � O2 is also a regular surface in R3:

Proof. The key point is to observe that if x : U ! x (U) � S1 is a parametrization of S1; then
' � x : U ! S2 is a parametrization of S2: The details are left to you. �

De�nition 2.16 Let U � Rn be an open set and F : U � Rn ! Rm is a di¤erentiable map
(C1 map). A point p 2 U is called a critical point of F if the di¤erential dFp : Rn ! Rm is not
onto (the de�nition is trivial if n < m since it is impossible for dFp : Rn ! Rm to be onto for
any p 2 U; and so any p 2 U is a critical point; therefore we focus on the case n � m). The
image F (p) of a critical point p is called a critical value of F: A point of Rm which is not a
critical value is called a regular value of F: Note: By de�nition, critical points are in the domain
of F and critical values (and regular values) are in the image of F: Note that critical values and
regular values of F are points in Rm: They are not numbers (unless m = 1).

Remark 2.17 By de�nition, if q 2 Rm is not in the image of F : U � Rn ! Rm; we still call it a
(trivial) regular value of F (see textbook p. 60, line -4). In such a case, F�1 (q) = ?: Therefore,
when we discuss the properties of a regular value q 2 Rm; we only focus on the case q 2 F (U) :

Remark 2.18 (Important observation.) In case m = 1 in the above de�nition, then dFp : Rn !
R is not onto is equivalent to

dFp = 0 on Rn: (117)

Remark 2.19 By de�nition, if q 2 Rm is in the image of F : U � Rn ! Rm and is a regular
value of F; then the di¤erential dFp : Rn ! Rm is onto for all p in the nonempty set

F�1 (q) = fp 2 U : F (p) = qg :

Example 2.20 If f : U � R! R; then x0 2 U is a critical point if and only if f 0 (x0) = 0: The
di¤erential dfx0 (v) = f 0 (x0) v = 0 is a zero map.

Example 2.21 Draw a picture for the case when f (x; y) : U � R2 ! R and identify its critical
values. At a critical point p 2 U; the tangent plane P to the graph z = f (x; y) at (p; f (p)) is given
by the horizontal plane z = f (p) :

Example 2.22 If f : U � R3 ! R; then p 2 U is a critical point if and only if

@f

@x
(p) =

@f

@y
(p) =

@f

@z
(p) = 0:

Hence a 2 f (U) is a regular value if and only if fx; fy and fz do not vanish simultaneously at any
point in the inverse image

f�1 (a) = fp 2 U : f (p) = ag :

Our purpose is to observe the following.

Theorem 2.23 If f : U � R3 ! R is a di¤erentiable map (here U is an open set in R3) and
a 2 f (U) is a regular value, then f�1 (a) � U is a regular surface in R3:

Remark 2.24 However, if a 2 f (U) is a critical value, then f�1 (a) � U may be or may not be
a regular surface in R3:
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Proof. The idea is to use the inverse function theorem (IVFT) in advanced calculus (this is
book proof; in my opinion, using implicit function theorem (IMFT) is more straightforward;
see Remark 2.25 below). Let p = (x0; y0; z0) 2 f�1 (a) : Without loss of generality, we may assume
that fz (p) 6= 0: De�ne a map F : U � R3 (with coordinates (x; y; z)) ! R3 (with coordinates
(u; v; t)) ! R3 by F (x; y; z) = (x; y; f (x; y; z)) and note that

dFp =

0@ 1 0 0
0 1 0
fx fy fz

1A ; fx = fx (x0; y0; z0) ; etc:

Hence det (dFp) = fz (p) 6= 0: By the inverse function theorem, there exist neighborhood V
of p (where V � U) and neighborhood W of F (p) such that F : V ! W is a di¤eomorphism
(explain this terminology) and one can solve (x; y; z) 2 V as a di¤erentiable function (denote it
as F�1 : W ! V ) of (u; v; t) 2 W by the following

x = u; y = v; z = g (u; v; t) ; (u; v; t) 2 W:

In particular, z = g (u; v; a) = g (x; y; a) (call it h (x; y)) is a di¤erentiable function de�ned in the
projection Vproj of V onto the xy-plane. Hence the set V

T
f�1 (a) � U can be expressed asn

(x; y; z) 2 V
\

f�1 (a) � U
o
=
n
(x; y; h (x; y)) 2 V

\
f�1 (a) � U

o
;

i.e., the graph of h (x; y) over Vproj is precisely the set V
T
f�1 (a) : More precisely, we have

F
�
V
\

f�1 (a)
�
= W

\
f(u; v; t) : t = ag :

By Proposition 2.10, V
T
f�1 (a) is a regular surface containing p 2 f�1 (a) : Hence there exist a co-

ordinate neighborhood around p and a local parametrization given by x (x; y) = (x; y; h (x; y)) ; (x; y) 2
Vproj: Since p 2 f�1 (a) is arbitrary, the set f�1 (a) is a regular surface. �

Remark 2.25 (Important.) In the above proof, we solve the equation f (x; y; z) = a to get z =
h (x; y) with z0 = h (x0; y0) ; under the assumption that f (p) = a and fz (p) 6= 0; p = (x0; y0; z0) : Since
for any p 2 f�1 (a) (denote f�1 (a) as S � R3) there is an open set V � R3 such that V

T
S is a

graph-like regular surface (of the form z = h (x; y) or y = h (x; z) or x = h (y; z)), we can apply
Lemma 2.13 to conclude that S � R3 is a regular surface.

Remark 2.26 At p = (x0; y0; z0) 2 f�1 (a) ; the regular surface (which is a level set) has its
"tangent plane" perpendicular to the gradient vector

rf (x0; y0; z0) = (fx (x0; y0; z0) ; fy (x0; y0; z0) ; fz (x0; y0; z0)) :

This is easy to see. Thus, the tangent plane at p of the regular surface f�1 (a) is the kernel of the
di¤erential dfp : R3 ! R: This fact is a special case of a more general theorem in advanced calculus.

Example 2.27 Do Example 2 (ellipsoid) in p. 63.

De�nition 2.28 A regular surface S � R3 is called (path) connected if any p; q 2 S can be
joined by a continuous curve lying on S:

Remark 2.29 A regular surface may be or may not be connected.

Example 2.30 Do Example 3 in p. 63.

The following fact will be used often.
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Lemma 2.31 If f : S � R3 ! R is a nonzero continuous function and S is connected regular
surface, then f does not change sign on S:

Proof. Assume not. Hence there exist p; q 2 S such that f (p) > 0 and f (q) < 0: As S is
connected, we can �nd a continuous curve � (t) : [a; b] ! S with � (a) = p; � (b) = q: Now the
function f (� (t)) : [a; b] ! R is a continuous function with f (� (a)) > 0 and f (� (b)) < 0: By the
Intermediate Value Theorem, there exists c 2 (a; b) such that f (� (c)) = 0; where � (c) 2 S: This
gives a contradiction. �

Example 2.32 Do Example 4 in p. 64. Note that for rf (x; y; z) = (0; 0; 0) ; we must have
either (x; y; z) = (0; 0; 0) or p

x2 + y2 = a and z = 0:

Since both cases will not happen, the number r2 is a regular value and f�1 (r2) is a regular surface.

Example 2.33 Do Example 6 in p. 67.

The following important fact says that any regular surface is locally the graph of a di¤erentiable
function.

Theorem 2.34 Let S � R3 be a regular surface and p 2 S: Then there exists a neighborhood V of
p in S (i.e., V is an open set in S) such that V is the graph of a di¤erentiable function of the form
z = f (x; y) or y = g (x; z) or x = h (y; z) :

Proof. Let x : U � R2 ! x (U) � S be a parametrization of S near p with x (q) = p; where q 2
U and

x (u; v)) = (x (u; v) ; y (u; v) ; z (u; v)) ; (u; v) 2 U:
Without loss of generality, we may assume that (note that rank (dxq) = 2)

@ (x; y)

@ (u; v)
(q) =

���� xu xv
yu yv

���� (q) 6= 0: (118)

Consider the map � �x : U ! R2; where � is the projection � (x; y; z) = (x; y) : Then �(x (u; v)) =
(x (u; v) ; y (u; v)) is a di¤erentiable map with nonzero Jacobian at q: By the inverse function
theorem, there exist small neighborhoods V1 of q in R2 (without loss of generality, we may assume
V1 � U) and V2 of � (x (q)) = � (p) in R2 such that

� � x : V1 � U � R2 (uv-space)! V2 � R2 (xy-space)

is a di¤eomorphism with di¤erentiable inverse (� � x)�1 : V2 ! V1: Since x : U ! x (U) � S1 is
a homeomorphism, the set V = x (V1) is a neighborhood of p in S and we see that � : V ! V2 is
one-one and onto.
Now if we compose the map (� � x)�1 : (x; y) ! (u (x; y) ; v (x; y)) with the function x : U �

R2 ! x (U) � S, we �nd that V is the graph of the di¤erentiable function z = z (u (x; y) ; v (x; y)) :=
f (x; y) (note that the three sets V1; V2 and V are all in one-one and onto correspon-
dence) over the open set (x; y) 2 V2: More precisely, we have

x � (� � x)�1 : V2
(��x)�1! V1

x! V

and for (x; y) 2 V2; we have�
x � (� � x)�1

�
(x; y)

= x (u (x; y) ; v (x; y)) = (x (u (x; y) ; v (x; y)) ; y (u (x; y) ; v (x; y)) ; z (u (x; y) ; v (x; y)))

= (x; y; z (u (x; y) ; v (x; y))) 2 V;

i.e. V is the graph of a function of the form z = f (x; y) over V2: The proof of the other two cases
are similar. �
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Remark 2.35 From the above proof we observe that y = x�(� � x)�1 : V2 ! S is a parametrization
that covers p 2 S such that � � y is the identity map on V2: This says that one can always cover a
point p 2 S by a parametrization that is the inverse map of a projection onto a coordinate plane.

The next theorem says that if we already know that S is a regular surface and we have a
candidate x for a parametrization, we do not have to check that x�1 is continuous provided the
other conditions in the de�nition are satis�ed.

Theorem 2.36 Let p 2 S be a point of a regular surface S and let x : U � R2 ! R3 be a map
with p 2 x (U) � S such that conditions 1 and 3 in De�nition 2.2 hold. Assume x : U ! x (U) is
one-one and onto. Then x�1 : x (U)! U is continuous.

Proof. This is obvious from the proof of Theorem 2.34. For any p = x (q) 2 x (U) ; q 2 U; we may
assume that

@ (x; y)

@ (u; v)
(q) =

���� xu xv
yu yv

���� (q) 6= 0 (119)

and, by the proof of Theorem 2.34, there is a neighborhood V � S of p such that it is the graph
of a di¤erentiable function z = f (x; y) over an open set V2 of the xy-plane. Also, there is an open
set V1 � U of q in R2 (uv-space) and V2 of � (p) in R2 (xy-space) such that � � x : V1 ! V2 is
a di¤eomorphism. Let V = x (V1) : Note that the map � : V ! V2 is continuous, one-one and
onto, due to the fact that x : V1 ! V is continuous, one-one and onto, and � � x : V1 ! V2 is a
di¤eomorphism (for any two points a 6= b 2 V; we have a = x (a1) and b = x (b1) ; a1 6= b1; and so
� (a) = � � x (a1) 6= � � x (b1) = � (b)).
By the above, we have

x�1 (�) = (� � x)�1 � � (�) ; 8 � 2 V;

which implies that x�1 : V ! V1 is a continuous map since both (� � x)�1 and � are both continuous
maps. In particular, the map x�1 is continuous at p; where p 2 x (U) is arbitrary. Therefore,
x�1 : x (U)! U is a continuous map. The proof is done. �

Remark 2.37 From the above proof, we can say that, up to a di¤eomorphism, the map x�1 is
like �: Hence it is continuous.

Example 2.38 (Example 5 in p. 66.) Let S be the graph of the function z =
p
x2 + y2; (x; y) lies

in some open set O of R2 containing (0; 0) : We claim that it is not a regular surface in R3. To
see this, by Theorem 2.34 there exists a neighborhood V of (0; 0; 0) in S (i.e., V is an open set in
S) such that V is the graph of a di¤erentiable function of the form z = f (x; y) or y = g (x; z) or
x = h (y; z) : It is clear that the last two forms are impossible since the projection of V onto xz and
yz planes are not one-one. Therefore we must have f (x; y) =

p
x2 + y2: We get a contradiction

since
p
x2 + y2 is not di¤erentiable at (0; 0) :

2.3 Change of Parameters; Di¤erentiable Functions on Surfaces (this
is Section 2.3 of the textbook).

Note that each point p on a regular surface S belongs to a coordinate neighborhood. The points
of such a neighborhood are characterized by their coordinates. We shall de�ne interesting local
properties of S in terms of these coordinates.
We �rst de�ne the meaning of a di¤erentiable function f on S (or on an open set of S).

De�nition 2.39 Let V � S be an open set. A function f : V � S ! R (or Rn) is called
di¤erentiable at p 2 V if, for some parametrization x : U � R2 ! S with p 2 x (U) � V , the
function f � x : U � R2 ! R (or Rn) is di¤erentiable at x�1 (p) : If f is di¤erentiable at every
p 2 V; we say it is di¤erentiable on V:
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Remark 2.40 According to the de�nition, the map f = x�1 : x (U) � S ! U is a di¤erentiable
map since f � x : U � R2 ! U � R2 is an identity map.

Remark 2.41 (Notation convention.) By abuse of notation, we shall write f (x (u; v)) as f (u; v)
(essentially we are identifying (u; v) 2 U and x (u; v) 2 x (U)) if no confusion occurs.

To see De�nition 2.39 is well-de�ned, we observe the following:

Theorem 2.42 (Change of parameters.). Let p be a point on a regular surface S and x : U �
R2 ! S; y : V � R2 ! S be two parametrizations of S such that p 2 x (U)

T
y (V ) = W (note

that W � S is an open set). Then the change of coordinates map (which is one-one and onto)

h = x�1 � y : y�1 (W ) � R2 ! x�1 (W ) � R2 (120)

is a di¤eomorphism between two open sets in Euclidean space.

Remark 2.43 Draw a picture for h:

Proof. Clearly h = x�1 � y : y�1 (W ) ! x�1 (W ) is a homeomorphism since it is com-
posed of homeomorphisms. Let r 2 y�1 (W ) and q = h (r) 2 x�1 (W ) : Since x = x (u; v) =
(x (u; v) ; y (u; v) ; z (u; v)) is a parametrization, we may assume that

@ (x; y)

@ (u; v)
(q) 6= 0; q 2 U:

We then extend x to a map F : U � R! R3 by

F (u; v; t) = (x (u; v) ; y (u; v) ; z (u; v) + t) ; (u; v) 2 U; t 2 R:

This map is clearly di¤erentiable and F = x on U � f0g ; F (q; 0) = x (q) ; and F (u; v; t) 2 S if
and only if t = 0: The function F maps a vertical cylinder C over U into a "vertical cylinder" over
x (U) : Moreover, the di¤erential dFq is nonsingular (the matrix for dFq is now 3 � 3). By the
inverse function theorem, there exists a neighborhood M of x (q) in R3 (M is an open set in R3)
such that F�1 exists and is di¤erentiable on M (note that we have extended x�1 locally into
F�1; which is a di¤erentiable map on some open set in R3):
By the continuity of y; there is a neighborhood N of r in V such that y (N) �M: Note that

hjN = x�1 � y
��
N
= F�1 � y

��
N
; (121)

which is a composition of two di¤erentiable maps (each map has domain an open set in Euclidean
space). Hence h is di¤erentiable on N and, in particular, di¤erentiable at r: As r 2 y�1 (W ) is
arbitrary, h is di¤erentiable on y�1 (W ) :
Similarly, we can show that h�1 is di¤erentiable on x�1 (W ) : Hence h : y�1 (W ) ! x�1 (W ) is

a di¤eomorphism. �

Remark 2.44 (Important.) From the proof of Theorem 2.42, we see that for any parametrization x :
U ! x (U) � S; the inverse map x�1 : x (U) ! U on S near any point p 2 x (U) can be locally
extended to a di¤erentiable map F�1 on some open set M 3 in R3; where p 2M:

Remark 2.45 By the above theorem, De�nition 2.39 does not depend on the choice of the
parametrization x: If y is another parametrization around p 2 S; then f � y = f � x � h is also
di¤erentiable. Draw a picture for this.

As a consequence of from the proof of Theorem 2.42, we have the following useful result:
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Theorem 2.46 Let S � R3 be a regular surface and let

� : V (open set) � Rn (n 2 N is arbitrary)! S

be a di¤erentiable map. For �xed q 2 V; let p = �(q) 2 S and let x : U � R2 ! x (U) � S be a
parametrization with p 2 x (U) : Then the map

x�1 � � : ��1 (x (U)) (open set in Rn)! U � R2 (122)

is di¤erentiable on ��1 (x (U)).

Remark 2.47 The property in Theorem 2.46 can be applied to Example 3 in p. 77. See Example
2.54 below.

Proof. We may assume ��1 (x (U)) 6= ? and for any q 2 ��1 (x (U)) ; we have p = �(q) 2 x (U) �
S: We know that near p 2 x (U) ; the inverse map x�1 on S can be locally extended to a
di¤erentiable map F�1 on some open set in R3: By this, we have�

x�1 � �
�
(q) =

�
F�1 � �

�
(q) for all q 2 ��1 (x (U)) : (123)

Since (F�1 � �) (q) is a di¤erentiable map on ��1 (x (U)) (F�1 � � is the composition of two dif-
ferentiable maps de�ned on open sets in Euclidean space), the function x�1 � � is di¤erentiable on
��1 (x (U)) : �

Example 2.48 Do Example 1 in p. 75. Discuss height function and distance function.

De�nition 2.49 A continuous map ' : V1 � S1 ! S2 from an open set V1 of a regular surface S1
into another regular surface S2 is called di¤erentiable at p 2 V1 if, given parametrizations

x1 : U1 � R2 ! S1; x2 : U2 � R2 ! S2

satisfying p 2 x1(U1); x1(U1) � V1; and ' (x1(U1)) � x2(U2); the map

x�12 � ' � x1 : U1 ! U2 (124)

is di¤erentiable at q = x�11 (p) :

Remark 2.50 Again, this de�nition is independent of the choice of parametrizations.

De�nition 2.51 A continuous map ' : S1 ! S2 between two regular surfaces is called a di¤eo-
morphism if ' is di¤erentiable with a di¤erentiate inverse '�1 : S2 ! S1: In such a case, these
two regular surfaces S1 and S2 are said to be di¤eomorphic.

Remark 2.52 From the viewpoint of di¤erentiability, two regular surfaces which are di¤eomorphic
are indistinguishable.

Example 2.53 (This is Example 2 in p. 76.) Let x : U � R2 ! S be a parametrization. For any
p 2 x (U) and any parametrization y : V � R2 ! S around p with p 2 x (U)

T
y (V ) = W: The

change of parameters map x�1 � y : y�1 (W )! x�1 (W ) is di¤erentiable. Therefore, by de�nition,
the inverse map x�1 : x (U) � S ! R2 is di¤erentiable and we conclude(

x : U � R2 ! x (U) � S is one-one, onto, di¤erentiable

x�1 : x (U) � S ! U � R2 is one-one, onto, di¤erentiable,

which implies that the two regular surfaces U � R2 (note that U � R2 can be viewed as a
regular surface in R3) and x (U) � S are di¤eomorphic. We conclude that a regular surface
S is a subset in R3 such that it is locally di¤eomorphic to an open subset of the plane R2.
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Example 2.54 (This is Example 3 in p. 77.) Let S1 and S2 be two regular surfaces such that
S1 � V (open set in R3) � R3; and that ' : V ! R3 is a di¤erentiable map with ' (S1) � S2: Then
the restriction 'jS1 : S1 ! S2 is a di¤erentiable map. To see this, we look at the map

x�12 � ' � x1| {z } : U1 ! U2;

where the map ' � x1 is a di¤erentiable map from U1 (open set in R2) to S1 and by Theorem 2.46
(see (123)), we know that x�12 �' � x1| {z } is a di¤erentiable map on U1: Continue with 1, 2, 3 in P. 77.
Before, we consider "parametrized curves" inR3:Now, similar to the de�nition of regular surfaces

in R3; one can also consider "regular curves" in R3: Its de�nition is similar to that of a regular
surface.

De�nition 2.55 A regular curve C in R3 is a subset of R3 with the property that for each
p 2 C there is a neighborhood V of p in R3 and a di¤erentiable homeomorphism � : I � R !
V
T
C (here I � R is an open interval) such that the di¤erential d�t is one-one (i.e., the linear

map d�t has rank one) for each t 2 I: The map � is called a local parametrization of C:

Remark 2.56 Unlike before (in Chapter 1), here a regular curve C has no self-intersections.

Remark 2.57 A change of parameters for a regular curve C is a di¤eomorphism from some
open interval of R to another open interval of R.

Example 2.58 (Surface of revolution by a generating curve C.) Let C be a regular con-
nected plane curve (according to De�nition 2.55) lying on xz-plane parametrized by

(x; 0; z) = (f (v) ; 0; g (v)) ; v 2 (a; b) ;

where (f 0 (v) ; 0; g0 (v)) 6= (0; 0; 0) and f (v) > 0 for all v 2 (a; b) : Here the map v ! (f (v) ; 0; g (v)) is
assumed to be one-one and onto between (a; b) and C. Let S � R3 be the set obtained by rotating C
with respect to z-axis. We claim that S is a regular surface in R3; called a surface of revolution.
To see this, consider the map

x (u; v) = (f (v) cos u; f (v) sinu; g (v)) ; (u; v) 2 (0; 2�)� (a; b) :

Then x : U = (0; 2�)� (a; b)! S � R3 is di¤erentiable with rank 2 everywhere. If we have

x (u0; v0) = x (u1; v1) for (u0; v0) 6= (u1; v1) 2 U;

then f 2 (v0) = f 2 (v1) (which implies f (v0) = f (v1) since f (v) > 0 for all v 2 (a; b)); g (v0) =
g (v1) : Hence we have v0 = v1 and then u0 = u1: We claim that x : U ! x (U) = S � fCg is a
homeomorphism. We �rst note that since (a; b)! C is a homeomorphism, v is a continuous function
of z = g (v) and

p
x2 + y2 = f (v) : Hence v is a continuous function of (x; y; z) 2 S � fCg : For

u 2 (0; 2�) ; it can be expressed as

u =

8>>><>>>:
cot�1 x

y
; if u 2 (0; �) (y 6= 0 on this interval)

� + cot�1 x
y
; if u 2 (�; 2�) (y 6= 0 on this interval)

� + tan�1 y
x
; if u 2

�
�
2
; 3�
2

�
(x 6= 0 on this interval),

where we note that, by de�nition, cot�1 x
y
2 (0; �) and tan�1 y

x
2
�
��
2
; �
2

�
: Hence (u; v) 2 U is a

continuous function of (x; y; z) 2 S � fCg (you can also see the argument in the textbook). Finally
we see that S can be covered by two such parametrizations. The circles generated by points of C are
called parallels of S and curves on S coming from a rotation of C are called meridians of S:
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Similar to the de�nition of a parametrized di¤erentiable curve in Chapter 1, we can also de�ne
the following:

De�nition 2.59 A parametrized surface is a di¤erentiable map x : U � R2 ! R3 from some
open set U � R2 into R3: The set x (U) is called the trace of x and we say x is regular if the
di¤erential dxq has rank 2 for all q 2 U: If dxq has rank 2; we say q 2 U is a regular point of
x: If dxq does not have rank 2; we say q 2 U is a singular point of x:

Remark 2.60 A regular surface (in the de�nition in p. 54 of the textbook) is locally a regular
parametrized surface.

Remark 2.61 In general, a parametrized surface, even regular everywhere, may have self-
intersections.

Remark 2.62 So until now, we have regular parametrized curves in R3 and regular curves
in R3: We also have regular parametrized surfaces in R3 and regular surfaces in R3:

Example 2.63 (This is Example 5 in p. 81.) Let I = (a; b) � R be an open interval and � : I ! R3
be a nonplanar regular parametrized curve and de�ne

x (t; v) = � (t) + v�0 (t) ; (t; v) 2 I � R:

Then x (t; v) is a parametrized surface called the tangent surface of �: Assume that the curvature
k (t) of � (t) is nonzero for all t 2 I and let U = f(t; v) : t 2 I; v 6= 0g = I � Rn f0g : Note that
U � R2 is not connected. Then x : U ! x (U) has rank 2 due to

@x

@t
^ @x
@v

= v�00 (t) ^ �0 (t) 6= 0; 8 (t; v) 2 U;

since

k (t) =
j�0 (t) ^ �00 (t)j
j�0 (t)j3

; t 2 I:

Thus x : U ! x (U) is a regular parametrized surface. Its trace consists of two connected pieces
whose common boundary is the set � (I) :

The relation between regular parametrized surfaces and regular surfaces is the following:

Theorem 2.64 Let U � R2 be an open set and x : U � R2 ! R3 be a regular parametrized surface
and q 2 U: Then there exists a neighborhood V of q in R2; V � U; such that x (V ) � R3 is a
regular surface (in the de�nition in p. 54 of the textbook). That is, a regular parametrized surface
is locally a regular surface.

Remark 2.65 (Be careful.) In the above theorem the neighborhood V � R2 is taken in the domain
space R2, not in the target space R3. This is because x (U) may have self-intersections and x (q)
may happen to be an intersection point.

Proof. (My proof is slightly di¤erent from the book proof.) Again, we use the inverse function
theorem. Write

x (u; v) = (x (u; v) ; y (u; v) ; z (u; v)) ; (u; v) 2 U;
and by regularity (dxp has rank 2 for all points p 2 U), without loss of generality, we may assume
that (@ (x; y) =@ (u; v)) (q) 6= 0; i.e.

@ (x; y)

@ (u; v)
(q) 6= 0; q = (u0; v0) 2 U:
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Denote (x (u0; v0) ; y (u0; v0) ; z (u0; v0)) = (x0; y0; z0) : By the inverse function theorem applied
to the map

(u; v) (near (u0; v0) )! � � x (u; v) = (x (u; v) ; y (u; v)) (near (x0; y0) ),

one can solve (u; v) in terms of (x; y) near (x0; y0) and near q = (u0; v0) ; the map x (u; v) when in
terms of (x; y) has the form

x (u; v) = x (u (x; y) ; v (x; y)) = (x; y; z (u (x; y) ; v (x; y))) ; 8 (u; v) 2 V;

where V is some small neighborhood of (u0; v0) in U: Hence we see that x (V ) � R3 is the graph
of a di¤erentiable function z = f (x; y) and is a regular surface. �

2.4 The Tangent Plane; the Di¤erential of a Map (this is Section 2.4
of the textbook).

De�nition 2.66 Let p 2 S: If there exists a di¤erentiable parametrized curve � (t) : (�"; ") !
S with � (0) = p and �0 (0) = v 2 R3; then we say v is a tangent vector to S at the point p:

De�nition 2.67 The set of all tangent vectors to S at p 2 S is called the tangent space of S at
p: We denote it as TpS:

We next review some elementary facts from advanced calculus. Let f : U � Rn ! R be a
di¤erentiable function and � (t) : (�"; ") ! U be a di¤erentiable curve in U with � (0) = p 2
U; �0 (0) = v 2 Rn: Then � (t) := f (� (t)) : (�"; ") ! R is also a di¤erentiable function with
� (0) = f (p) and by the chain rule we know that

�0 (0) = hrf (� (0)) ; �0 (0)i = hrf (p) ; vi ; (125)

where

rf (p) =
�
@f

@x1
(p) ;

@f

@x2
(p) ; ::: ;

@f

@xn
(p)

�
; p 2 U:

The value of �0 (0) does not depend on the curve � (t) as long as it satis�es � (0) = p and �0 (0) = v:
Now if f = (f1; ::: ; fm) : U � Rn ! Rm is a di¤erentiable function and � (t) : (�"; ")! U is a

di¤erentiable curve in U with � (0) = p 2 U; �0 (0) = v 2 Rn: The composition � (t) := f (� (t)) =
(f1 (� (t)) ; ::: ; fm (� (t))) : (�"; ") ! Rm is a curve in Rm with � (0) = f (p) and the chain rule
implies

�0 (t)jt=0 =
�
d

dt
f1 (� (t))

����
t=0

; ::: ;
d

dt
fm (� (t))

����
t=0

�
= (hrf1 (p) ; vi ; ::: ; hrfm (p) ; vi) = dfp (v) ; (126)

where dfp (�) : Rn ! Rm is the di¤erential (or derivative or total derivative) of f at p: From
advanced calculus, we know that dfp (�) : Rn ! Rm is a linear map.
Again, the vector �0 (t)jt=0 does not depend on � (t) as long as it satis�es � (0) = p and �0 (0) =

v: For two di¤erent � (t) ; ~� (t) with � (0) = ~� (0) = p and �0 (0) = ~�0 (0) = v; the two curves

� (t) = f (� (t)) and ~� (t) = f
�
~� (t)

�
in Rm both pass the point f (p) 2 Rm and have the same

tangent vector dfp (v) :

Remark 2.68 Draw a picture for the above discussion.

Important observation: From the above observation, to compute dfp (v) ; one can
choose a convenient � (t) with � (0) = p; �0 (0) = v and evaluate d

dt
f (� (t))

��
t=0

:
We also have the following interesting observation:
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Lemma 2.69 Let f; g : U � R2 ! R be two di¤erentiable maps such that f = g along two
di¤erentiable curves � (t) ; � (t) 2 U with � (0) = � (0) = p 2 U and �0 (0) is independent to
�0 (0) : Then we have dfp (v) = dgp (v) for all v 2 R2:

Proof. Exercise. �

The following says that the tangent space of a regular surface S at p 2 S is a vector space of
dimension 2:

Theorem 2.70 Let x : U � R2 ! S � R3 be a parametrization of a regular surface S and
q 2 U: The vector space of dimension 2; given by

dxq
�
R2
�
� R3;

coincides with the set of all tangent vectors to S at the point p = x (q) ; i.e., dxq (R2) = TpS: In
particular, we see that TpS is a plane in R3 passing through p and the linear map dxq : R2 ! TpS is
one-one and onto.

Remark 2.71 By the above theorem, the plane dxq (R2) ; which passes through p = x (q) does
not depend on the parametrization x: This is because our de�nition of TpS does not involve any
parametrization.

Proof. Let w 2 TpS. Then there exists a di¤erentiable map � (t) : (�"; ") ! S with � (0) =
p and �0 (0) = w: Now the curve � (t) := x�1 (� (t)) : (�"; ") ! U � R2 is di¤erentiable (see
Theorem 2.46) with � (0) = q: By the chain rule, we have

dxq(�
0 (0)) =

d

dt

����
t=0

x (� (t))

=
d

dt

����
t=0

x
�
x�1 (� (t))

�
=

d

dt

����
t=0

� (t) = w; �0 (0) 2 R2;

which implies w 2 dxq (R2) and so TpS � dxq (R2)
Conversely, let w = dxq (v) for some v 2 R2: Then v is the velocity vector of the curve 
 :

(�"; ") ! R2 given by 
 (t) = q + tv; 
 (0) = q 2 U: Now we look at the di¤erentiable curve
� = x � 
 : (�"; ")! S: By the chain rule, we have

�0 (0) = dxq (

0 (0)) = dxq (v) = w 2 TpS:

Hence we have dxq (R2) � TpS. The proof is done. �

Recall that if f : U � R3 ! R is a di¤erentiable map (here U is an open set in R3) and
a 2 f (U) is a regular value, then f�1 (a) � U is a regular surface in R3: For any p 2 S =
f�1 (a) ; the tangent space TpS can be described as the following:

Lemma 2.72 Let f : U � R3 ! R be a di¤erentiable map and a 2 f (U) is a regular value, then

TpS = ker
�
dfp : R3 ! R

	
; p 2 S = f�1 (a) : (127)

Proof. Since a is a regular value of f : U � R3 ! R, the map dfp : R3 ! R is onto and
the vector space ker fdfp : R3 ! Rg has dimension 2: For any curve � (t) 2 S = f�1 (a) with
� (0) = p; �0 (0) = v 2 TpS; we have f (� (t)) = a for all t 2 (�"; ") : Hence dfp (v) = (f � �)0 (0) = 0
and so TpS � ker fdfp : R3 ! Rg : Since both spaces have dimension 2; we conclude that TpS =
ker fdfp : R3 ! Rg : �
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Let x : U � R2 ! S � R3 be a parametrization of a regular surface S and q 2 U: The choice of
the parametrization x determines a basis

fdxq (e1) ; dxq (e2)g =
�
@x

@u
(q) ;

@x

@v
(q)

�
(also denote it as fxu (q) ; xv (q)g )

of TpS:We call it the basis associated to the parametrization x: If (u (t) ; v (t)) 2 U is a curve
with (u (0) ; v (0)) = q and (u0 (0) ; v0 (0)) = w; then the vector dxq(w) is given by

dxq(w) = u0 (0)xu (q) + v0 (0)xv (q) : (128)

De�nition 2.73 (The di¤erential of a function de�ned on regular surface S � R3:) Let
' : V � S ! R (or Rn) be a di¤erentiable function, where V � S is an open set and p 2 V . For
any v 2 TpS one can choose a curve � (t) 2 V; t 2 (�"; ") ; with � (0) = p and �0 (0) = w: Then
� (t) = ' (� (t)) ; t 2 (�"; ") ; is a real-valued function. We de�ne d'p (w) = �0 (0) ; where
d'p : TpS ! R (or Rn) is called the di¤erential of ' at p 2 V:
Lemma 2.74 In the above de�nition, the quantity d'p (w) 2 R (or Rn) is independent of the
choice of the curve � (t) 2 V as long as � (0) = p and �0 (0) = w:

Proof. Let x : U � R2 ! S � R3 be a local parametrization around p 2 S with x (q) = p; q 2
U: Let 
 (t) be another curve in V with 
 (0) = p and 
0 (0) = w; and let ~� (t) = x�1 (� (t)) ; ~
 (t) =
x�1 (
 (t)) be the corresponding curves in U: We have ~� (0) = ~
 (0) = q 2 U: We also know that
(note that the domain of x is an open set in R2 and so the familiar chain rule in advanced calculus
is valid here)

dxq (~�
0 (0)) =

d

dt
x (~� (t))

����
t=0

=
d

dt
� (t)

����
t=0

= w

and

dxq (~

0 (0)) =

d

dt
x (~
 (t))

����
t=0

=
d

dt

 (t)

����
t=0

= w:

Since dxq : R2 ! TpS (= dxq (R2)) is an isomorphism (both R2 and TpS have the same dimen-
sion), we must have

~�0 (0) = ~
0 (0) ; ~� (t) 2 U; ~
 (t) 2 U; t 2 (�"; ") :
Now the map ' � x : U � R2 ! R is di¤erentiable (we may assume x (U) � V ). Hence we know
that

d

dt
(' � x) (~� (t))

����
t=0

=
d

dt
(' � x) (~
 (t))

����
t=0

;

which implies
d

dt
' (� (t))

����
t=0

=
d

dt
' (
 (t))

����
t=0

:

Thus the de�nition of the value d'p (w) is independent of the choice of the curve � (t) : �
Remark 2.75 (Important.) From the above de�nition, the di¤erentiable map x�1 : x (U) � S !
R2 has di¤erential at p = x (q) ; i.e. d(x�1)p : TpS ! R2: One can check that for any v 2 TpS we
have:

dxq � d(x�1)p (v) = dxq

�
d

dt

����
t=0

x�1(� (t))

�
(here � (0) = p; �0 (0) = v 2 TpS)

chain rule
=

d

dt

����
t=0

�
x � x�1 (� (t))

�
=

d

dt

����
t=0

� (t) = v; 8 v 2 TpS:

Since dxq : R2 ! TpS is a linear isomorphism, the map d(x�1)p : TpS ! R2 is the inverse
of the linear map dxq : R2 ! TpS; where x (q) = p 2 S: Note that by Lemma 2.74, the vector
d(x�1)p (v) is independent of the choice of the curve � (t) as long as it satis�es � (0) = p 2 S and
�0 (0) = v 2 TpS:
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De�nition 2.76 (The di¤erential of a function de�ned on regular surface S � R3:) Let
' : V � S1 ! S2 be a di¤erentiable map, where V � S1 is an open set and p 2 V . For any
v 2 TpS1 one can choose a curve � (t) 2 V; t 2 (�"; ") ; with � (0) = p and �0 (0) = w: Then the
curve � (t) = ' (� (t)) ; t 2 (�"; ") ; will be a curve in S2 passing through ' (p) : We de�ne

d'p (w) = �0 (0) 2 T'(p)S2

and the map
d'p : TpS1 ! T'(p)S2

is called the di¤erential of ' at p 2 V:

The following says that the above de�nition is well-de�ned.

Theorem 2.77 The vector d'p (w) is independent of the choice of the curve � (t) (as long as
it satis�es � (0) = p and �0 (0) = w) and the di¤erential d'p : TpS1 ! T'(p)S2 is a linear map
between two tangent spaces.

Proof. (Read it by yourself.) See Remark 2.75 �rst.

Let x (u; v) and �x (�u; �v) be parametrizations in neighborhoods of p and ' (p) respectively and
suppose that ' is expressed (at the bottom level) in these coordinates by

' (u; v) = ('1 (u; v) ; '2 (u; v))

and � is expressed by � (t) = (u (t) ; v (t)) ; t 2 (�"; ") : Then we have

� (t) = ('1 (u (t) ; v (t)) ; '2 (u (t) ; v (t)))

and by the chain rule

�0 (0) =

�
@'1
@u

(�)u0 (0) + @'1
@v

(�) v0 (0) ; @'2
@u

(�)u0 (0) + @'2
@v

(�) v0 (0)
�

where (�) = (u (0) ; v (0)) : Thus �0 (0) depends only on the map ' and the coordinates (u0 (0) ; v0 (0))
of the vector w is the basis fxu;xvg : In particular, it is independent of the curve � (t) (as long as
� (0) = p and �0 (0) = w).
We can see that

�0 (0) = d'p (w) =

 @'1
@u
(�) @'1

@v
(�)

@'2
@u
(�) @'2

@v
(�)

!�
u0 (0)
v0 (0)

�
: (129)

By Remark 2.75, this implies that d'p : TpS1 ! T'(p)S2 (at the top level) is linear and its matrix
representation with respect to the bases fxu;xvg of TpS1 and f�x�u; �x�vg of T'(p)S2 is the matrix given
by (129). �

Example 2.78 Read Example 1 and Example 2 in p. 88 by yourself ...

The most important for di¤erentiable maps between regular surfaces is probably the following:
The chain rule in Euclidean spaces can be generalized to surfaces.

Lemma 2.79 (Chain rule for di¤erentiable maps on regular surfaces.) (This is Exercise
24 in p. 93.) Let S1; S2; S3 be three regular surfaces in R3 and let ' : S1 ! S2 and  : S2 ! S3
be two di¤erentiable maps. For any p 2 S1 we have

d ( � ')p = d '(p) � d'p (130)

where we note that both sides of (130) are linear maps from TpS1 to T ('(p))S3:
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Proof. For any v 2 TpS1; choose � (t) 2 S1 with � (0) = p; �0 (0) = v: Then

d '(p) � d'p (v) = d '(p)

�
d

dt

����
t=0

' (� (t))

�
=

d

dt

����
t=0

 (' (� (t))) = d ( � ')p (v) :

The proof is done. �

Remark 2.80 By the above we see that if ' : S1 ! S2 is a di¤eomorphism, then

(d'p)
�1 = d('�1)'(p): (131)

De�nition 2.81 A mapping ' : U � S1 ! S2 between two regular surfaces in R3 is called a local
di¤eomorphism at p 2 U if there exists a neighborhood V � U of p such that ' : V ! ' (V ) is a
di¤eomorphism.

We can extend the important inverse function theorem in calculus to di¤erentiable mappings
between regular surfaces.

Theorem 2.82 (Inverse function theorem on surfaces.) (This is Proposition 3 in p. 89.)
Let S1; S2 be two regular surfaces in R3: If ' : U � S1 ! S2 is a di¤erentiable map such that the
di¤erential d'p : TpS1 ! T'(p)S2 is an isomorphism at p 2 U; then ' is a local di¤eomorphism
at p:

Proof. Let x (u; v) and �x (�u; �v) be parametrizations in neighborhoods of p and ' (p) respectively.
The map  = �x�1 �'�x : O � R2 ! R2 is de�ned on some open set O in R2 containing q = x�1 (p)
and, by Remark 2.75 and Lemma 2.79, we see that d q : R2 ! R2 is an isomorphism. Hence by the
classical inverse function theorem, there exist open set O1 � O � R2 and open set O2 � R2 such
that  : O1 ! O2 is a di¤eomorphism. Now ' = �x �  � x�1 : x (O1)! �x (O2) is a di¤eomorphism
and the proof is done. �

Example 2.83 (Interesting.) Let S � R3 be a compact regular surface (this means that S �
R3 is a regular surface and is also a compact set in R3; for example, a sphere or an ellipsoid) and
' : S ! R2 is a di¤erentiable map (note that both S and R2 have the same dimension). We claim
that the di¤erential d'p : TpS ! R2 cannot be nonsingular for all p 2 S (i.e. ' : S ! R2 must
have critical point on S): To see this, since the set ' (S) is compact in R2; there exists a point
p0 2 S such that j' (p0)j > 0 is the maximum of ' on S: If d'p0 : Tp0S ! R2 is nonsingular, then
by the above inverse function theorem, there exist neighborhood of p0 in S and neighborhood of
' (p0) in R2 such that ' on these two neighborhoods is a di¤eomorphism. This will imply that
j' (p0)j > 0 cannot be the maximum of ' on S:

Lemma 2.84 (This is Exercise 21 in book p. 93.) Let S be a connected regular surface. If
f : S ! R (or Rn) is di¤erentiable with dfp = 0 for all p 2 S; then f is a constant map.

Remark 2.85 The terminology "connected" in this book is de�ned in p. 63 of the book, which
actually means "path connected". There is a property in general topological space which says that
"path connected" implies "connected" (which in topology means that S cannot be decomposed
as S = A

S
B; where both A and B are nonempty open sets in S: In particular, if a set A � S is

both open and closed in S; then either A = ? or A = S:

Remark 2.86 In advanced calculus there is the following result: Let U � Rn be an open connected
set and F : U � Rn ! Rm is a di¤erentiable map. If we have dFp = 0 for all p 2 U; then F must
be a constant map. We will use this property in the following proof.
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Proof. See Remark 2.85 �rst.

Choose a 2 f (S) and consider the set

A = fp 2 S : f (p) = ag � S:

The set A 6= ? since a is in the image of f and there exists some p0 2 S with f (p0) = a; i.e. p0 2
A: Clearly A is closed in S: We claim that A is also open in S: For any p 2 A � S; there exists a
parametrization x : U � R2 ! x (U) � S satisfying: U is open and connected in R2; x (U) is open
and connected in S; p 2 x (U) : The map f � x : U � R2 ! R (or Rn) will satisfy (by chain rule
and the assumption)

d (f � x)q = dfx(q) � dxq = 0; 8 q 2 U:

Since U is open and connected in R2; result in advanced calculus says that f �x must be a constant
function on U: Therefore, f is a constant function C on the open set x (U) and, by p 2 x (U) ; the
constant C must be equal to f (p) ; i.e. C = f (p) = a: Hence the whole open set x (U) � A and
A is closed in S: Now we conclude A = S and so f is a constant map on S: �

De�nition 2.87 Let S � R3 be a regular surface. If f : S ! R is di¤erentiable with dfp = 0 on
TpS; then we say p 2 S is a critical point of f on S:

Remark 2.88 Similar to De�nition 2.16, we say p 2 S is a critical point of f on S if the map
dfp : TpS ! R is not onto. Since dimR = 1; we see not "not onto" is equivalent to "dfp = 0 on
TpS".

The following is obvious:

Lemma 2.89 If f : S ! R is di¤erentiable and p 2 S is a local maximum (or minimum) of
f; then p is a critical point of f on S:

Proof. Choose � (t) : (�"; ") ! S with � (0) = p; �0 (0) = v 2 TpS: Since � (0) = p is a local
maximum (or minimum) of f; we have

dfp (v) =
d

dt

����
t=0

f (� (t)) = 0:

Since �0 (0) = v 2 TpS is arbitrary, we have dfp (v) = 0 for all v 2 TpS and p is a critical point of
f on S: �

De�nition 2.90 Let x : U � R2 ! S be a parametrization of a regular surface. The vector

N (q) =
xu ^ xv
jxu ^ xvj

(q) 2 R3; q 2 U (132)

is called the unit normal vector �eld on x (U) � S induced by the parametrization x: Note: N (q) is
normal to S at the point p = x (q) :

Lemma 2.91 The map N : x (U) � S ! R3 is di¤erentiable on x (U) :

Proof. This is obvious if we use local coordinate x to express N: We have

N � x (q) = xu ^ xv
jxu ^ xvj

�
x�1 (x (q))

�
=
xu ^ xv
jxu ^ xvj

(q) ; q 2 U:

Since the denominator is not zero for all q 2 U; xu^xv
jxu^xv j (q) is a di¤erentiable function on U: The

result follows. �
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De�nition 2.92 Let p 2 S. The line passing through p and is perpendicular to TpS is called the
normal line of S at p:

Example 2.93 (Simple but interesting.) Let p0 2 R3 with p0 =2 S; and f : S ! R is the square
of the distance (in R3) to p0 given by

f (p) = jp� p0j2 ; p 2 S: (133)

For any v 2 TpS; we have

dfp (v) =
d

dt

����
t=0

j� (t)� p0j2 = 2 hv; p� p0i ; � (0) = p; �0 (0) = v:

Hence if p 2 S is a critical point of f if and only if the line segment p0p is normal to S at
p. Moreover, if S is a compact regular surface in R3 (this means that S � R3 is a regular
surface and is also a compact set in R3; for example, a sphere or an ellipsoid), then f : S ! R
has at least one critical point p 2 S (because f on S has maximum value and minimum value
attained on S): From this, we conclude:

From any point p0 2 R3; p0 =2 S; we can draw a normal line to a given compact surface S:

If S is connected (not necessarily compact) and dfp = 0 for all p 2 S (i.e., all points on S are
critical points of f), then f must be a constant map, i.e.

f (p) = jp� p0j2 = C > 0; 8 p 2 S: (134)

From this, we conclude:

If all normal lines of a connected surface S meet at a given point p0 2 R3, then
the surface is contained in a sphere centered at p0.

A di¤erent way to say the above is that if p0 =2 S is such that the line segment p0p is normal to
S for all p 2 S; then S must be contained in a sphere centered at p0.

2.4.1 Diagonalization of a 3� 3 symmetric matrix via critical point theory.

Remark 2.94 We can use calculus to solve an algebra problem ... The method can be
generalized to the case A 2M (n) ; where A is symmetric.

One can use critical point theory discussed in the above to diagonalize a 3�3 symmetric matrix.
Let A 2M (3) be symmetric. From linear algebra, we know that it has 3 real eigenvalues.
Consider the di¤erentiable map f : S2 ! R given by

f (p) = hAp; pi ; p 2 S2; (135)

where S2 � R3 is the unit sphere (a regular surface) in R3 given by S2 = fp 2 R3 : jpj = 1g and
h�; �i is the inner product in R3: We �rst note that the function satis�es

f (�p) = f (p) ; 8 p 2 S2 (136)

and for � (t) : (�"; ")! S2 with � (0) = p 2 S2; �0 (0) = v 2 TpS2; the following holds (note that
A is symmetric)

dfp (v) =
d

dt

����
t=0

hA� (t) ; � (t)i

= hAv; pi+ hAp; vi = 2 hAp; vi ; 8 v 2 TpS2; p 2 S: (137)
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Therefore, p 2 S2 is a critical point of f (same as dfp = 0) if and only if Ap ? TpS
2: Since p 2 S2 is

also perpendicular to TpS2; we have: p 2 S2 is a critical point of f if and only if

Ap = �p for some � 2 R (� = 0 is possible), (138)

and we have
� = h�p; pi = hAp; pi = f (p) : (139)

Therefore, we conclude the following:

Lemma 2.95 A point p 2 S2 is a critical point of f : S2 ! R (de�ned by (135)) if and only if
p 2 S2 is an eigenvector of A with eigenvalue f (p) : Moreover, if p 2 S2 is a critical point of
f so is �p 2 S2 and we have f (�p) = f (p) :

Example 2.96 Assume the symmetric matrix A 2M (3) has 3 di¤erent real eigenvalues �1; �2; �3 with

Ap1 = �1p1; Ap2 = �2p2; Ap3 = �3p3; where p1; p2; p3 2 S2:

Then we know that the three vectors p1; p2; p3 must be independent in R3: In such a case, the
function f : S2 ! R has 6 critical points on S2; given by �p1; �p2; �p3 and no others. Also,
f : S2 ! R has 3 critical values on R; given by the above 3 di¤erent eigenvalues �1; �2; �3 and
no others.

Since S2 is compact, there exist p1; p2 2 S2 such that f (p1) = minS2 f and f (p2) =
maxS2 f and dfp1 = dfp2 = 0: Therefore, we conclude

Ap1 = f (p1) p1; Ap2 = f (p2) p2; p1; p2 2 S2:

Without loss of generality, we can assume f (p1) < f (p2) (otherwise, we are in the trivial case
f � c; a constant, and then A = cI). Next, we claim that p1 ? p2: To see this, by

(f (p1)� f (p2)) hp1; p2i = f (p1) hp1; p2i � f (p2) hp1; p2i
= hAp1; p2i � hp1; Ap2i = 0; where f (p1)� f (p2) 6= 0;

we have p1 ? p2: Finally, choose p3 2 S2 such that fp1; p2; p3g forms an orthonormal basis.
Then we have

hAp3; p1i = hp3; Ap1i = hp3; f (p1) p1i = 0
and similarly hAp3; p2i = 0: This implies that Ap3 = �p3 for some � 2 R and � = f (p3) : We have
found an orthonormal basis fp1; p2; p3g with8>><>>:

Ap1 = f (p1) p1 = (minS2 f ) p1;

Ap2 = f (p2) p2 = (maxS2 f) p2;

Ap3 = f (p3) p3; p1; p2; p3 2 S2
(140)

which means that A can be diagonalized. Finally, we note that

min
S2

f � f (p3) � max
S2

f (141)

and it is possible to have f (p3) = minS2 f or f (p3) = maxS2 f ; but not both.

The above material on regular surface, together with the curve
material in Chapter 1, will be the coverage of the midterm on 11/8

To Be Continued after Midterm Exam

See the tex �le: Di¤Geom Lecture Note Second Part 2023-11-14.tex
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